Меню

Образование почв функция живого вещества

Биосфера

Биосфера (греч. bios — жизнь + sphaira — шар) — наружная оболочка Земли, населенная живыми организмами, составляющими в совокупности живое вещество планеты. Термин «биосфера» предложен австрийским геологом Э. Зюссом, учение о биосфере было создано и развито российским и советским ученым Вернадским Владимиром Ивановичем.

Биосфера — совокупность всех биогеоценозов, это открытая система, структура и свойства которой определяются деятельностью организмов в прошлом и настоящем. Биосферу можно рассматривать как часть лито-, гидро- и атмосферы, заселенную живыми существами.

Запомните, что наибольшая концентрация живого вещества сосредоточена на границе сред (к примеру, на границе литосферы и атмосферы).

Границы биосферы

Общая толщина биосферы приблизительно 17 км. Живые организмы проникают вглубь литосферы на расстояние до 6-7 км, заселяют всю толщу гидросферы (до самого дна мирового океана). В атмосфере живые организмы встречаются в нижней части — тропосфере, которую сверху ограничивает озоновый слой (часть стратосферы).

Выше «озонового экрана» существование жизни в привычном для нас виде невозможно, так как губительное УФ (ультрафиолетовое) излучение уничтожает все живое. Возникновению жизни в недрах Земли препятствует высокая температура, оказывающая разрушительное воздействие.

Вещество биосферы

Многокомпонентная сложная система биосферы включает несколько отдельных элементов. Вернадский В.И. создал учение, в соответствии с которым вещество биосферы состоит из:

    Живое вещество

Совокупность всех живых организмов на нашей планете. Именно Вернадский показал, что деятельность живых существ — важнейший фактор геологических изменений планеты.

Формируется без участия живых организмов. Базальт, гранит, песок, золотоносные руды. К косному веществу можно отнести горные породы магматического происхождения, образовавшиеся в результате извержения вулканов.

Это вещество образуется живыми организмами в процессе их жизнедеятельности. Примерами биогенного вещества могут послужить залежи известняка, природный газ, кислород, нефть, каменный уголь, торф.

Биокосное вещество создается одновременно деятельностью живых организмов и косными процессами. Таким образом, биокосное вещество объединяет в себе живое и косное вещества.

К биокосному веществу относятся пресная и соленая вода, почва, воздух. Почва является верхним наиболее плодородным слоем литосферы Земли. Почва — уникальный продукт совместной деятельности живых организмов, то есть биологических и геологических процессов, протекающих в живой природе.

Функции живого вещества

Важнейший компонент биосферы — живое вещество, то есть — живые организмы. Их деятельность приводит к наиболее значительным геологическим изменениям в биосфере, они обеспечивают круговорот веществ — главное условие зарождения новой жизни.

Перечислим важнейшие функции живого вещества:

    Энергетическая

Живые организмы постоянно получают и преобразуют энергию. Растения преобразуют энергию солнечного света в энергию химических связей, а животные передают ее по цепочке. После смерти растений и животных энергия возвращается в круговорот благодаря бактериям и грибам — сапротрофам (греч. sapros – гнилой), разлагающим мертвое органическое вещество.

Деятельность живых организмов обеспечивает постоянный газовый состав атмосферы. В ходе дыхания животные поглощают кислород и выделяют углекислый газ, а растения в ходе фотосинтеза поглощают углекислый газ и выделяют кислород. Бактерии хемотрофы также выделяют в атмосферу некоторые газы, полученные окислением сероводорода, азота.

Я никогда не перестану восхищаться этой функцией живого вещества. Вы только вдумайтесь: на одной и той же почве, рядом друг с другом, растут совершенно разные растения по форме, размеру и окраске плодов, цветков! Каждый раз задумываешься: как это возможно?

Это связано с тем, что каждое живое существо избирательно накапливает определенные химические элементы. К примеру, многие моллюски накапливают кальций, образуют известковый скелет — раковину. После их смерти раковины опускаются на дно, в результате чего создаются залежи полезных ископаемых — известняка (мела).

В результате жизнедеятельности мха сфагнума образуется полезное ископаемое — торф, а папоротниковидные образуют каменный уголь. Это концентрат углеродистых и кальциевых соединений в погибших растениях, которые тысячелетиями отмирали и образовали залежи ископаемых.

Живые организмы способны окислять и восстанавливать различные химические вещества. На реакциях окисления и восстановления основан метаболизм (обмен веществ) любого живого существа, подобные реакции протекают постоянно в ходе фотосинтеза, энергетического обмена.

Без разрушения «старой» жизни, невозможно возникновение «новой». После смерти живых существ их останки подвергаются разрушению, из них высвобождается энергия, накопленная в связях химических веществ. Непрерывный круговорот должен продолжаться всегда — это главное условие жизни.

Теория биогенной миграции атомов Вернадского В.И.

При непосредственном участии живого вещества в биосфере непрерывно осуществляется биогенная миграция атомов. Даже сейчас, с каждым вашим вдохом, атомы кислорода соединяются с гемоглобином эритроцитов, доставляются по крови к клеткам тканей организма и становятся частью ваших клеток.

Откуда взялся кислород, которым мы дышим? Его в процессе фотосинтеза выделили растения. Для процесса фотосинтеза необходим углекислый газ, который в процессе дыхания выделяют животные, углекислый газ, который образуется при разложении останков растений и животных. Получается круговорот атомов.

Все атомы, которыми мы обладаем, которые стали частью наших рук, глаз, носа, языка — все эти атомы кому-то принадлежали до нас! За миллиарды лет существования Земли они успели побывать в мириадах растений, грибов и животных. То, что наши атомы сейчас с нами — великое чудо и немыслимая случайность.

Я искренне восхищаюсь этой теорией, она показывает непрерывность жизни, бесконечность нашего существования и единство всего живого.

Ноосфера

Ноосфера (греч. noos — разум и sphaira — шар) — термин введенный русским ученым В.И. Вернадским. Ноосфера подразумевает взаимодействие природы и общества, при котором человек является главным определяющим фактором эволюции. Человек становится крупнейшей геологической силой.

Споры о том, можно ли считать современный этап развития цивилизации ноосферой остаются открытыми. Основная идея ноосферы — разумное, рациональное поведение человека, при котором он сосуществует в гармонии со всеми другими формами жизни.

К сожалению, нынешняя ситуация напоминает старую поговорку: «Пока не потеряешь, не осознаешь ценность». Неужели растения должны исчезнуть с лица Земли, чтобы мы вспомнили о том, что благодаря фотосинтезу в их листьях мы дышим кислородом? В этом случае чувство нашего ложного величия может сильно пострадать.

Круговорот веществ

Углерод находится в природе в основном в составе углекислого газа, угольной кислоты и ее нерастворимых солей — карбоната кальция (из которого состоят раковины моллюсков). Отмирая, живые организмы образуют залежи полезных ископаемых: торф, древесину, каменный уголь, нефть. Известняк может надолго исключить углерод из круговорота веществ.

Подобно этому, долгое время нефть и уголь были почти полностью исключены из круговорота веществ, однако в настоящее время человек «вернул их в строй» вместе с выхлопными газами.

Азот находится в воздухе, которым мы дышим, и составляет 78% от его объема. Большая часть азота поступает в почву и воду благодаря деятельности микроорганизмов, бактерий и водорослей.

Широко известны клубеньковые бактерии на корнях бобовых растений, находящиеся с ними в симбиозе. Клубеньковые бактерии переводят атмосферный азот в нитраты, которые необходимы для роста и развития растения и могут быть усвоены им, в отличие от атмосферного азота (газа).

Читайте также:  Когда собирать желуди для выращивания дуба

В листьях в процессе биосинтеза азот преобразуется в белки. Травоядные животные поедают растения, таким образом, белок включается в их состав. После смерти животных белки разлагаются сапротрофами, которые выделяют аммиак, нитраты. Часть нитратов усваивается растениями, а часть восстанавливается бактериями до атмосферного азота — цикл замыкается.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Образование почв функция живого вещества

Главная
English
Биологический кружок ВООП
Гостю кружка
Планы кружка
Экспедиции и выезды
Исследовательская работа
Программа «Parus»
История кружка
Контакты кружка
Полевой центр
Фотогалерея
Летопись биостанции
Статьи о биостанции
Исследовательские работы
Учебные программы
Полевые практикумы
Методические семинары
Вебинары
Исследовательская работа
Проектная деятельность
Экспедиции и лагеря
Экологические тропы
Экологические игры
Публикации (статьи)
Методические материалы
Наглядные определители
Карманные определители
Определительные таблицы
Энциклопедии природы России
Компьютерные определители
Мобильные определители
Учебные фильмы
Методические пособия
Полевой практикум
Природа России
Минералы и горные породы
Почвы
Грибы
Лишайники
Водоросли
Мохообразные
Травянистые растения
Деревья и кустарники
Ягоды и сочные плоды
Насекомые-вредители
Водные беспозвоночные
Дневные бабочки
Рыбы
Амфибии
Рептилии
Птицы, гнезда и голоса
Млекопитающие и следы
Фото растений и животных
Систематический каталог
Алфавитный каталог
Географический каталог
Поиск по названию
Галерея
Природные ландшафты мира
Физическая география России
Физическая география мира
Европа
Азия
Африка
Северная Америка
Южная Америка
Австралия и Новая Зеландия
Антарктика
Рефераты о природе
География
Геология и почвоведение
Микология
Ботаника
Культурные растения
Зоология беспозвоночных
Зоология позвоночных
Водная экология
Цитология, анатомия, медицина
Общая экология
Охрана природы
Заповедники России
Экологическое образование
Экологический словарь
Географический словарь
Художественная литература
Международные программы
Общая информация
Полевые центры (Великобритания)
Международные экспедиции (США)
Курс полевого образования (США)
Международные контакты
Интернет-магазин
Карманные определители
Цветные таблицы
Компьютерные определители
Энциклопедии природы
Методические пособия
Учебные фильмы
Комплекты материалов
Контакты
Гостевая книга
Ссылки
Партнеры
Наши баннеры
Карта сайта

Бесплатные экскурсии в музей Пиявки!
Международный Центр Медицинской Пиявки приглашает посетить музей и узнать о пользе и вреде пиявок, их выращивании, гирудотерапии, лечебной косметике и многом другом. Подробнее >>>

АгроБиоФерма «Велегож» в Подмосковье приглашает!
Принимаются организованные группы школьников и родители с детьми (от 12 до 24 чел.) по учебно-познавательной программе «Введение в природопользование» Подробнее >>>

Зимние учеты птиц России!
Приглашаем биологические кружки, профессиональных орнитологов и просто любителей птиц принять участие в программах зимних учетов птиц «Parus» и «Евроазиатские Рождественские учеты» в зимний сезон 2020-2021 годов. Подробнее >>>

Биологический кружок ВООП приглашает!
Биологический кружок при Государственном Дарвиновском музее г.Москвы (м.Академическая) приглашает школьников 5-10 классов на занятия в музее, экскурсии по вечерам, учебные выезды в природу по выходным и дальние полевые экспедиции в каникулы! Подробнее >>>

Соревнования по полевой ботанике «ВЕСЕННЯЯ ФЛОРА» пройдут в мае-июне 2020 года в онлайн-формате (определение растений по фотографиям). К участию в соревновании приглашаются школьники и взрослые любители природы, проживающие в средней полосе Европейской части России. Подробнее >>>

Международные дни наблюдений за птицами!
Союз охраны птиц России приглашает российских любителей птиц принять участие в акции и загрузить результаты своих наблюдений на www.biodat.ru Подробнее >>>

Здесь может быть бесплатно размещено Ваше объявление о проводимом Всероссийском конкурсе, Слёте, Олимпиаде, любом другом важном мероприятии, связанном с экологическим образованием детей или охраной и изучением природы. Подробнее >>>

Мы публикуем на нашем сайте авторские образовательные программы, статьи по экологическому образованию детей в природе, детские исследовательские работы (проекты), основанные на полевом изучении природы. Подробнее >>>

Если Вам понравился и пригодился наш сайт — кликните по иконке «своей» социальной сети:

Биосфера (в современном понимании) – своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами. Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. Понятие «живое вещество» обозначает совокупность живых организмов биосферы. Область распространения включает нижнюю часть воздушной оболочки (атмосферы), всю водную оболочку (гидросферу), и верхнюю часть твёрдой оболочки (литосферы). Это понятие было введено В. И. Вернадским. Он отметил, что между косной, безжизненной частью биосферы, косными природными телами и живыми организмами, её населяющими идёт непрерывный обмен энергией. Живое вещество играет наиболее важную роль по сравнению с другими веществами биосферы, и выполняет рад важнейших функций.

Энергетическая функция выполняется, прежде всего, растениями, которые в процессе фотосинтеза аккумулируют солнечную энергию в виде разнообразных органических соединений. Чтобы биосфера могла существовать и развиваться, ей необходима энергия. Собственных источников энергии она не имеет и может потреблять энергию только от внешних источников. Главным источником для биосферы является Солнце. По сравнению с Солнцем, энергетический вклад других поставщиков (внутреннее тепло Земли, энергия приливов, излучение космоса) в функционирование биосферы ничтожно мал (около 0,5% от всей энергии, поступающей в биосферу). Солнечный свет для биосферы является рассеянной лучистой энергией электромагнитной природы. Почти 99% этой энергии, поступившей в биосферу, поглощается атмосферой, гидросферой и литосферой, а также участвует в вызванных ею физических и химических процессах (движение воздуха и воды, выветривание и др.) Только около 1% накапливается на первичном звене ее поглощения и передается потребителям уже в концентрированном виде. По словам Вернадского, зеленые хлорофилльные организмы, зеленые растения, являются главным механизмом биосферы, который улавливает солнечный луч и создает фотосинтезом химические тела — своеобразные солнечные консервы, энергия которых в дальнейшем становится источником действенной химической энергии биосферы, а в значительной мере — всей земной коры. Без этого процесса накопления и передачи энергии живым веществом невозможно было бы развитие жизни на Земле и образование современной биосферы.

Каждый последующий этап развития жизни сопровождался все более интенсивным поглощением биосферой солнечной энергии. Одновременно нарастала энергоемкость жизнедеятельности организмов в изменяющейся природной среде, и всегда накопление и передачу энергии осуществляло живое вещество. Современная биосфера образовалась в результате длительной эволюции под влиянием совокупности космических, геофизических и геохимических факторов. Первоначальным источником всех процессов, протекавших на Земле, было Солнце, но главную роль в становлении и последующем развитии биосферы сыграл фотосинтез. Биологическая основа генезиса биосферы связана с появлением организмов, способных использовать внешний источник энергии, в данном случае энергию Солнца, для образования из простейших соединений органических веществ, необходимых для жизни.

Под фотосинтезом понимается превращение зелеными растениями и фотосинтезирующими микроорганизмами при участии энергии света и поглощающих свет пигментов (хлорофилл и др.) простейших соединений (воды, углекислого газа и минеральных элементов) в сложные органические вещества, необходимые для жизнедеятельности всех организмов. Процесс протекает следующим образом. Фотон солнечного света взаимодействует с молекулой хлорофилла, содержащегося в хлоропласте зеленого листа, в результате чего высвобождается электрон одного из ее атомов. Этот электрон, перемещаясь внутри хлоропласта, реагирует с молекулой АДФ, которая, получив достаточную дополнительную энергию, превращается в молекулу АТФ – вещества, являющегося энергоносителем. Возбужденная молекула АТФ в живой клетке, содержащей воду и диоксид углерода, способствует образованию молекул сахара и кислорода, а сама при этом утрачивает часть энергии и превращается вновь в молекулу АДФ.

В результате фотосинтеза растительность земного шара ежегодно усваивает около двухсот миллиардов тонн углекислого газа и выделяет в атмосферу примерно сто сорок пять миллиардов тонн свободного кислорода, при этом образуется более ста миллиардов тонн органического вещества. Если бы не жизнедеятельность растений, исключительно активные молекулы кислорода вступили бы в различные химические реакции, и свободный кислород исчез бы из атмосферы примерно за десять тысяч лет. К сожалению, варварское сокращение человеком массивов зеленого покрова планеты являет реальную угрозу уничтожения современной биосферы. В процессе фотосинтеза одновременно с накоплением органического вещества и продуцированием кислорода растения поглощают часть солнечной энергии и удерживают ее в биосфере. На фотосинтез используется около 1% солнечной энергии, падающей на Землю. Возможно, этот низкий показатель связан с малой концентрацией углекислого газа в атмосфере и гидросфере. Ежегодно фотосинтезирующие организмы суши и океана связывают около 3•1018 кДж солнечной энергии, что примерно в десять раз больше той энергии, которая используется человечеством.

В отличие от зеленых растений некоторые группы бактерий синтезируют органическое вещество за счет не солнечной энергии, а энергии, выделяющейся в процессе реакций окисления серных и азотных соединений. Этот процесс именуется хемосинтезом. В накоплении органического вещества в биосфере он, по сравнению с фотосинтезом, играет ничтожно малую роль. Внутри экосистемы энергия в виде пищи распределяется между животными. Синтезированные зелеными растениями и хемобактериями органические вещества (сахара, белки и др.), последовательно переходя от одних организмов к другим в процессе их питания, переносят заключенную в них энергию. Растения поедают растительноядные животные, которые в свою очередь становятся жертвами хищников и т. д. Этот последовательный и упорядоченный поток энергии является следствием энергетической функции живого вещества в биосфере.

Минерализация органических веществ, разложение отмершей органики до простых неорганических соединений, химическое разложение горных пород, вовлечение образовавшихся минералов в биотический круговорот определяет деструктивную (разрушительную) функцию живого вещества. Данную функцию в основном выполняют грибы, бактерии. Мертвое органическое вещество разлагается до простых неорганических соединений (углекислого газа, воды, сероводорода, метана, аммиака и т. д.), которые вновь используются в начальном звене круговорота. Этим занимается специальная группа организмов — редуценты (деструкторы).

Особо следует сказать о химическом разложении горных пород. Благодаря живому веществу биотический круговорот пополняется минералами, высвобождаемыми из литосферы. Например, плесневый грибок в лабораторных условиях за неделю высвобождал из вулканической горной породы 3 % содержащегося в ней кремния, 11% алюминия, 59 % магния, 64 % железа. Сильнейшее химическое воздействие на горные породы растворами целого комплекса кислот — угольной, азотной, серной и разнообразных органических оказывают бактерии, сине-зеленые водоросли, грибы и лишайники. Разлагая с их помощью те или иные минералы, организмы избирательно извлекают и включают в биотический круговорот важнейшие питательные элементы — кальций, калий, натрий, фосфор, кремний, микроэлементы. Общая масса зольных элементов, вовлекаемая ежегодно в биотический круговорот только на суше, составляет около восьми миллиардов тонн, что в несколько раз превышает массу продуктов извержения всех вулканов мира на протяжении года. Благодаря жизнедеятельности организмов-деструкторов создается уникальное свойство почв – их плодородие.

Концентрационная (накопительная) функция — избирательное накопление определенных веществ, рассеянных в природе — водорода, углерода, азота, кислорода, кальция, магния, натрия, калия, фосфора и многих других, включая тяжелые металлы, в живых существах. Раковины моллюсков, панцири диатомовых водорослей, скелеты животных — все это примеры проявления концентрационной функции живого вещества.

Способность концентрировать элементы из разбавленных растворов — это характерная особенность живого вещества. Наиболее активными концентраторами многих элементов являются микроорганизмы. Например, в продуктах жизнедеятельности некоторых из них по сравнению с природной средой содержание марганца увеличено в 1 200 000 раз, железа — в 65 000, ванадия — в 420 000, серебра — в 240 000 раз.
Для построения своих скелетов или покровов активно концентрируют рассеянные минералы морские организмы. Так, существуют кальциевые организмы — известковые водоросли, моллюски, кораллы, мшанки, иглокожие, и т. п., и кремниевые — диатомовые водоросли, кремниевые губки, радиолярии. Особого внимания заслуживает способность морских организмов накапливать микроэлементы, тяжелые металлы, в том числе ядовитые (ртуть, свинец, мышьяк), радиоактивные элементы. В теле беспозвоночных и рыб их концентрация может в сотни тысяч раз превосходить содержание в морской воде. Вследствие этого морские организмы полезны как источник микроэлементов, но вместе с тем употребление их в пищу может грозить отравлением тяжелыми металлами или быть опасным в связи с повышенной радиоактивностью.

Живое вещество преобразует физико-химические параметры среды в условия, благоприятные для существования организмов. В этом проявляется еще одна главная функция живого вещества — средообразующая. Например, леса регулируют поверхностный сток, увеличивают влажность воздуха, обогащают атмосферу кислородом.

Можно сказать, что средообразующая функция — совместный результат всех рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья биологического круговорота (в ходе фотосинтеза растения выполняют газовую функцию: поглощают углекислый газ и выделяют кислород); деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для организмов элементов.

Средообразующие функции живого вещества создали и поддерживают баланс вещества и энергии в биосфере, обеспечивая стабильность условий существования организмов, в том числе человека. Вместе с тем живое вещество способно восстанавливать условия обитания, нарушенные в результате природных катастроф или антропогенного воздействия. Эту способность живого вещества к восстановлению благоприятных условий существования выражает принцип Ле Шателье, заимствованный из области термодинамических равновесий. Он заключается в том, что изменение любых переменных в системе в ответ на внешние возмущения происходит в направлении компенсации производимых возмущений. В теории управления аналогичное явление носит название отрицательных обратных связей. Благодаря этим связям система возвращается в первоначальное состояние, если производимые возмущения не превышают пороговых значений. Например, на повышение содержания углекислого газа в атмосфере биосфера отвечает усилением фотосинтеза, который снижает концентрацию кислорода. Таким образом, устойчивость биосферы оказывается явлением не статическим, а динамическим.

Средообразующая роль живого вещества имеет химическое проявление и выражается в соответствующих биогеохимических функциях, которые свидетельствуют об участии живых организмов в химических процессах изменения вещественного состава биосферы. В результате средообразующей функции в географической оболочке произошли следующие важнейшие события: был преобразован газовый состав первичной атмосферы; изменился химический состав вод первичного океана; образовалась толща осадочных пород в литосфере; на поверхности суши возник плодородный почвенный покров (также плодородны воды океана, рек и озер). Живое вещество выполняет следующие биогеохимические функции: газовые, концентрационные, окислительно-восстановительные, биохимические и биогеохимические, связанные с деятельностью человека.

Газовые функции заключаются в участии живых организмов в миграции газов и их превращениях. В зависимости от того, о каких газах идет речь, выделяется несколько газовых функций.

1. Кислородно-диоксидуглеродная – создание основной массы свободного кислорода на планете. Носителем данной функции является каждый зеленый организм. Выделение кислорода идет только при солнечном свете, ночью этот фотохимический процесс сменяется выделением зелеными растениями углекислого газа.

2. Диоксидуглеродная, не зависимая от кислородной – образование биогенной угольной кислоты как следствие дыхания животных, грибов и бактерий. Значение функции возрастает в области подземной тропосферы, не имеющей кислорода.

3. Озонная и пероксидводородная – образование озона (и, возможно, пероксида водорода). Биогенный кислород, переходя в озон, предохраняет жизнь от разрушительного действия радиации Солнца. Выполнение этой функции вызвало образование защитного озонового экрана.

4. Азотная – создание основной массы свободного азота тропосферы за счет выделения его азотовыделяющими бактериями при разложении органического вещества. Реакция происходит в условиях как суши, так и океана.

5. Углеводородная – осуществление превращений многих биогенных газов, роль которых в биосфере огромна. К их числу относятся, например, природный газ, терпены, содержащиеся в эфирных маслах, скипидаре и обусловливающие аромат цветов, запах хвойных.

Вследствие выполнения живым веществом газовых биогеохимических функций в течение геологического развития Земли сложились современный химический состав атмосферы с уникально высоким содержанием кислорода и низким содержанием углекислого газа, а также умеренные температурные условия. В соответствии с гипотезой О. Г. Сорохтина, не весь кислород атмосферы имеет биогенное происхождение, 30% его поступило в воздушный бассейн в результате дегазации недр. Рассмотрим влияние средообразующей функции организмов на содержание кислорода и углекислого газа в атмосфере. Повышение концентрации кислорода в атмосфере вызывает «парниковый эффект» и способствует потеплению климата. Свободный кислород выделяется при фотосинтезе. Впервые на Земле массовое развитие фотосинтезирующих организмов — сине-зеленых водорослей — имело место два с половиной миллиарда лет назад. Благодаря этому в атмосфере появился кислород, что дало импульс быстрому развитию животных. Однако интенсивный фотосинтез сопровождался усиленным потреблением кислорода и уменьшением его содержания в атмосфере. Это привело к ослаблению «парникового эффекта», резкому похолоданию и первому в истории планеты (гуронскому) оледенению.

В наши дни накопление в атмосфере углекислого газа от сжигания углеводородного топлива рассматривается как тревожная тенденция, ведущая к потеплению климата, таянию ледников и грозящая повышением уровня Мирового океана более чем на сто метров. В связи с этим следует отметить функцию захвата и захоронения избыточной углекислоты морскими организмами путем перевода ее в соединения углекислого кальция, а также путем образования биомассы живого вещества. Вследствие выполнения окислительно-восстановительных функций осуществляются химические превращения веществ, содержащих атомы с переменной валентностью. Окислительная функция выражается в окислении с участием бактерий и, возможно, грибов всех бедных кислородом соединений в почве, коре выветривания и гидросфере. Например, так образуются болотные железные руды, бурые железистые конкреции, ожелезненные горизонты. Восстановительная функция противоположна по своей сути окислительной. Благодаря ей в результате деятельности анаэробных бактерий в нижней трети профиля заболоченных почв, практически лишенного кислорода, образуются оксидные формы железа.

Биохимические функции связаны с жизнедеятельностью живых организмов – их питанием, дыханием, размножением, смертью и последующим разрушением тел. В результате происходит химическое превращение живого вещества сначала в биокосное, а затем, после умирания, в косное. Следует различать разрушение тел организмов после их смерти, идущее повсеместно и вызываемое микробами, грибами и некоторыми насекомыми, и разрушение, связанное с массовым захоронением растительных и животных остатков после их смерти или гибели. В последнем случае совместное или последовательное выполнение живым веществом концентрационных и биохимических функций приводит к геохимическому преобразованию литосферы.

Биогеохимические функции, связанные с деятельностью человека, обеспечили большие изменения химических и биохимических процессов в биосфере, способствуют становлению ее нового эволюционного состояния – ноосферы. Уже сегодня локальное и планетарное загрязнение в результате развития теплоэнергетики, промышленности, транспорта и сельского хозяйства может привести к необратимым последствиям в биосфере, так как человек интенсивнее, чем другие организмы, изменяет физические условия среды. Чистота морских вод — результат фильтрации, осуществляемой разнообразными организмами, но особенно зоопланктоном. Большинство из этих организмов добывает пищу, отцеживая из воды мелкие частицы. Работа их настолько интенсивна, что весь океан очищается от взвеси за 4 года. Озеро Байкал исключительной чистотой своих вод во многом обязано веслоногому рачку эпишуре, который за год трижды процеживает его воду.

На земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом. Химическое состояние наружной коры нашей планеты всецело находится под влиянием жизни и определяется живыми организмами, с деятельностью которых связан великий планетарный процесс – миграция химических элементов в биосфере. Жизнь на Земле – самый выдающийся процесс на её поверхности, получающий живительную энергия Солнца и приводящий в движение (круговорот веществ) едва ли не все химические элементы таблицы Менделеева. Жизнь сводится к непрерывной последовательности роста, самовоспроизведения и синтеза сложных химических соединений. Без переноса энергии, сопровождающего эти процессы, невозможно было бы ни существование самой жизни, ни образование надорганизменных систем всех уровней организации. Если бы солнечная энергия на планете только рассеивалась, то жизнь на Земле была бы невозможной. Чтобы биосфера существовала, она должна получать и накапливать энергию извне. И эта работа выполняется живыми организмами.

Список использованной литературы:

1. Киселёв В. Н. Основы экологии: Учеб. пособие. – Минск.: Унiверсiтэцкае, 2000.

2. Лапо А.В. Следы былых биосфер. – М., 1987.

3. Петров К. М. Общая экология: взаимодействие общества и природы: Учебное пособие для вузов. – СПб.: Химия, 1997.

Источник

Все про удобрения © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Пожалуйста, ставьте гиперссылку на сайт www.ecosystema.ru если Вы копируете материалы с этой страницы!
Во избежание недоразумений ознакомьтесь с правилами использования и копирования материалов с сайта www.есоsystеmа.ru
Пригодилась эта страница? Поделитесь ею в своих социальных сетях: