Mse-Online.Ru
Химический состав почв
Химический состав почвы является отражением элементарного состава всех геосфер, принимающих участие в формировании почвы. Поэтому в состав всякой почвы входят те элементы, которые распространены или встречаются как в литосфере, так и в гидро-, атмо- и биосфере.
В состав почв входят почти все элементы периодической системы Менделеева. Однако подавляющее их большинство встречается в почвах в очень малых количествах, поэтому в практике приходится иметь дело всего с 15 элементами. К ним принадлежат прежде всего четыре элемента органогена, т. е. С, N, О и Н, как входящие в состав органических веществ, затем из неметаллов S, Р, Si и С1, а из металлов Na, К, Са, Mg, AI, Fe и Мn.
Перечисленные 15 элементов, составляя основу химического состава литосферы в целом, в то же время входят в зольную часть растительных и животных остатков, которая, в свою очередь, образуется за счет элементов, рассеянных в массе почвы. Количественное содержание в почве этих элементов различно: на первое место надо поставить О и Si, на второе — А1 и Fe, на третье — Са и Mg, а затем — К и все остальные.
Нормальный рост растений обусловлен содержанием в почве доступных форм зольных элементов и азота. Обычно растения усваивают из почвы N, Р, К, S, Са, Mg, Fe, Na, Si в достаточно больших количествах и эти элементы называются макроэлементами, а В, Mn, Mo, Сu, Zn, Со, F используются в ничтожных количествах и называются микроэлементами. К важнейшим из них относятся элементы, без которых невозможно образование белков,— N, Р, S, Fe, Mg; такие элементы, как К, Сu, Mg, Na, оказывают огромное влияние на регуляцию работы клеток и формирование различных тканей растений.
Элементы питания, содержащиеся в почвах, находятся в различных минеральных и органических соединениях, и запасы их обычно значительно превышают ежегодную потребность. Однако большая часть их находится в форме, не доступной для растений: азот — в органическом веществе, фосфор — в фосфатах, железо, алюминий, кальций, калий — в поглощенном состоянии, кальций и магний — в форме карбонатов, т. е. в не растворимой в воде форме. Процесс усвоения растениями элементов питания происходит благодаря обменному поглощению. Формы соединений и биологическое значение химических элементов различны. Элементы входят в состав почв в форме различных химических соединений, характеризующих тип почвы, и имеют разное биологическое значение.
Кислород в свободном состоянии находится в почвенном воздухе, а в связанном входит в состав воды, окислов, гидратов, кислородных кислот и их солей. Он имеет важное значение, как элемент, необходимый для дыхания растений и животных, и как элемент-органоген.
Кремний входит в состав силикатов, т. е. солей кремниевых, алюмокремниевых и феррокремниевых кислот, а также встречается в виде кремнезема, как кристаллического (кварц), так и аморфного. Биологическое значение кремния не выяснено, но он всегда содержится в золе растений (в особенности камыша и тростника) и, по-видимому, необходим для образования клеток и тканей более твердых частей организмов.
Алюминий входит в состав алюмосиликатов, глинозема и гидратов глинозема. Биологического значения он не имеет.
Железо входит в состав ферросиликатов и других солей, как окисных, так и закисных, а также в состав гидратов железа. Биологическое значение его велико: с ним связано образование хлорофилла в зеленых растениях.
Кальций встречается преимущественно в виде солей разных кислот, чаще всего угольной. Он очень важен для растений, так как входит в состав стеблей, и обычно находится в растительных клетках в виде кристаллов щавелевокислого кальция.
Магний, как и кальций, встречается в виде аналогичных соединений. Он важен для растений, так как входит в состав хлорофилла.
Натрий и калий входят в состав солей различных кислот, причем натрий биологического значения не имеет, тогда как калий является одним из основных элементов питания растений и, в частности, играет большую роль в крахмалообразовании.
Фосфор входит в состав почвы в виде фосфатов и в виде различных органических соединений. Он содержится в ядре растительных клеток. Известно, что недостаток в почве фосфора отражается на качестве зерна. Он является одним из основных питательных элементов и необходим для развития растений так же, как и азот.
Азот — исключительно важный для питания растений, элемент- органоген, входящий в состав молекулы белков основы растительной и животной клетки, Встречается в почве в форме различных органических соединений, аммиачных солей и солей азотной и азотистой кислот.
Сера также входит в состав молекулы белков. В почвах встречается в форме сульфатов, сернистых солей, сероводорода и различных органических соединений.
Водород важен для растений как органоген. Входит в состав воды, гидратов, разнообразных свободных кислот и их кислых солей.
Хлор биологического значения не имеет. В почве встречается в виде хлористых солей.
Углерод входит в состав растительных остатков и составляет в среднем 45 % их массы. Как основа всех органических соединений он имеет исключительно большое значение. Встречается в почве также и в форме минеральных соединений углекислого газа и солей угольной кислоты.
Марганец, как предполагают, играет роль катализатора. Определенное биологическое значение имеют также и многие другие химические элементы, встречающиеся в почвах в очень малых количествах (например, медь, цинк, фтор, бор и другие), так называемые микроэлементы. Некоторые из них используются в качестве минеральных удобрений. Однако наибольшее значение для питания растений имеют соли калия, кальция, магния, железа и кислот — азотной, фосфорной, серной и угольной.
Для характеристики плодородия почвы наибольшее значение имеет содержание гумуса, азота, фосфора и калия. Определение содержания в почве тех или других химических элементов и форм их соединений является задачей химического анализа почв.
Содержание гумуса в верхнем горизонте почв разного типа колеблется в широких пределах, но для каждого типа и подтипа почвы оно является достаточно устойчивым и поэтому характерным показателем. Для остальных элементов, наряду с их валовым содержанием (которое свидетельствует о той или иной степени плодородия почвы), необходимо знать содержание их форм растениями.
Валовое содержание в почвах азота и фосфора (в верхнем горизонте) обычно выражается в десятых долях процента, калия содержится до двух и более процентов. Содержание же их усвояемых форм не превышает тысячных долей процента и его принято выражать в миллиграммах на 100 г почвы.
Источник
Химический состав почвы
Наиболее распространенными в почве являются следующие элементы: кислород (49 %), кремний (33 %), алюминий (7,13%), железо (3,80 %), углерод (2,0 %), кальций (1,37 %), калий (1,36 %), натрий (0,63 %), магний (0,63%), азот (0,10%).
Кроме того, в почве находится большая группа химических элементов, содержание которых невысокое (10-2–10-5 %), но они играют биологическую роль, это – бор, медь, марганец, цинк, кобальт, фтор и др.
По валовому химическому составу можно судить о направлении процессов почвообразования, Так, например, накопление кремнезема в верхних горизонтах, а железа и алюминия в средней части профиля свидетельствует о разрушении алюмосиликатов и выносе из верхних горизонтов подвижных продуктов разрушения.
Формы нахождения химических элементов в почве могут быть иными – в составе минералов, органического вещества, в форме гидроксндов и оксидов, солей, в составе почвенных коллоидов и др., а значит, доступность их растениям разная. Поэтому часто важно определить не валовое содержание элемента в почве, а его доступные растениям количества. С этой целью используют различные растворители (растворы солеслабых кислот, щелочей), в вытяжках которых и определяют содержание элементов питания растений. Таким образом, химический состав почвы можно рассматривать как показатель экологического состояния почвы. Часто это состояние оказывается неудовлетворительным с точки зрения минерального питания растений, земледелец оптимизирует эту экологическую функцию почвы с помощью внесения удобрений.
Культурные растения по-разному реагируют на один и тот же уровень содержания в почве доступных (легкорастворимых) элементов питания. Так, наиболее требовательными к пищевому режиму почвы являются овощные и плодово-ягодные культуры, менее требовательны яровые зерновые, лен, травы, промежуточное положение занимают пропашные – картофель, кукуруза.
Источник
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Популярные статьи
Состав почвы
В состав почвы входят:
- твердая фаза;
- жидкая фаза, или почвенный раствор;
- газовая (газообразная) фаза, или почвенный воздух.
Почва — самостоятельное естественно-историческое органоминеральное природное тело, возникшее на поверхности Земли в результате длительного воздействия биотических, абиотических и антропогенных факторов, состоящее из твердых минеральных и органических частиц, воды и воздуха и имеющее специфические генетико-морфологические признаки, свойства, создающие для роста и развития растений соответствующие условия. Почва — сложная саморегулирующаяся поликомпонентная биокосная единая система.
Газовая фаза
Газовая фаза является результатом взаимодействия атмосферного воздуха и газов, образующихся в почве. В его составе отмечается более высокое, по сравнению с атмосферным воздухом, содержание углекислого газа — 0,3-1%, иногда до 2-3% и более и меньшее содержание кислорода. Газа фаза отличается высокой подвижностью, которая зависит от множества условий: содержания органического вещества, погодных условий, характера растительности и др.
Достаточное содержание кислорода в почве создает благоприятные условия для деятельности аэробных микроорганизмов. Напротив, при его недостатке складываются условия для развития анаэробных бактерий, которые часто являются патогенными для растений.
Объем почвенного воздуха находится в динамическом равновесии с жидкой фазой: чем больше воды, тем меньше воздуха. Процессы газообмена в почве происходят постоянно в результате разложения органических веществ, дыхания корней растений и почвенных организмов, а также некоторых химических реакций. В результате газообмена надпочвенный воздух обогащается углекислым газом, улучшая условия фотосинтеза. При взаимодействии углекислого газа с водой жидкой фазой происходит слабое подкисление почвенного раствора по реакции:
Подкисление способствует переходу некоторых минеральных веществ твердой фазы, например, фосфатов и сульфата кальция, в доступную для растений форму. Одновременно, избыток углекислого газа приводит к недостатку кислорода и созданию анаэробных условий, что наблюдается при переувлажнении и переуплотнении почв. Недостаток кислорода в газовой фазе тормозит рост и развитие микроорганизмов и растений, препятствует усвоению питательных веществ, усиливает восстановительные процессы в жидкой и твердой фазах.
Почвенный воздух сосредотачивается в некапиллярных порах, то есть в больших промежутках почвы. При заполнении всех пор водой почвенный воздух вытесняется, наоборот, если почва сухая, воздух заполняет все поры — капиллярные и некапиллярные.
Наиболее оптимальное соотношение воды и воздуха складывается на рыхлых структурных окультуренных и обработанных почвах. Регулирование водного и воздушного режимов почв соответствующими обработками в сочетании с применением удобрений и мелиорантов улучшает корневое и воздушное питание растений, тем самым повышает количество и качество продукции, способствует развитию почвенной биоты.
Источник
Химический состав почв. Основные питательные элементы для растений. Микроэлементы
Для нормального роста и развития растениям необходимы свет, тепло, вода, воздух и питательные вещества. Все эти условия жизни для растений равноценны и незаменимы.
В почвах элементы питания растений находятся в составе минералов, органических и органо-минеральных соединений твердой фазы почв, в почвенных растворах (в основном в ионной форме) и в газовой фазе почв.
Химический состав почв
В результате поглощения питательных элементов растения формируют корневые и надземные массы, которые используются людьми как продукты питания, корм для животных или как сырье для промышленности (клубни картофеля, зерно, лен и т. д.).
В почвах содержатся практически все элементы периодической системы Д. И. Менделеева, но для питания растениям наиболее необходимы 19 элементов: С, Н, О, N, P, S, К, Са, Mg, Fe, Mn, Cu, Zn, Mo, В, CI, Na, Si, Co.
Из них 16 элементов, кроме С, Н, О, относятся к минеральным. Углерод, водород и кислород поступают в растения преимущественно в виде СО2, О2 и Н2О. Необходимость натрия, кремния и кобальта не для всех растений установлена.
Углерод, водород, кислород и азот называют органогенными элементами, так как в основном из них состоит организм растений. Углерода содержится в среднем 45 % от сухой массы тканей растений, кислорода — 42, водорода — 6,5, азота — 1,5 %. Их сумма составляет 95 %. Оставшиеся 5 % приходятся на зольные элементы: Р, S, К, Са, Mg, Fe, Si, Na и др. Они называются так потому, что преобладают в золе растений.
Химический состав золы является показателем валового количества усвоенных растениями из почвы зольных элементов питания. Их выражают в оксидах или в элементах по отношению к массе сухого вещества, или к массе золы в процентах.
Валовой химический состав растений значительно отличается от валового состава почвы вследствие избирательности растений к поглощению отдельных элементов для формирования урожая (табл. 12). В растениях всегда больше азота, фосфора и калия.
12. Валовой химический состав пахотных горизонтов почв (% на прокаленную навеску) в сравнении с зольным составом растений (% на золу)