Меню

Очистка загрязненных почв от тяжелых металлов

Мероприятия по очистке почв, загрязненных тяжелыми металлами

Практическое занятие

Расчет загрязнения почв тяжелыми металлами

Цель занятия: ознакомиться с термином «тяжелые металлы» и их токсикологической характеристикой

Из большого количества загрязнителей природной среды и сельскохозяйственной продукции наибольшее распространение получили ТМ. По способности накапливаться в экосистемах и токсичности выделяют 10 приоритетных загрязнителей: ртуть, свинец, кадмий, медь, ванадий, олово, цинк, кобальт, никель и молибден. Из них ртуть, свинец, кадмий и цинк относятся к первому классу опасности.

Источники поступления ТМ в биотический круговорот формируются в результате природных (естественных) и антропогенных (деятельности человека) процессов. К основным антропогенным источникам поступления тяжелых металлов относят: теплоэлектростанции, предприятия тяжелой промышленности, автомобильный транспорт. В агроландшафты тяжелые металлы поступают из атмосферы (мокрое и сухое осаждение), с поверхностным стоком, с минеральными и органическими удобрениями, агрохимикатами, в результате эксплуатации сельскохозяйственной техники и др.

К тяжелым металлам относятся химические элементы, имеющие плотность более 5 /см 3 или атомную массу более 50 единиц. Таких элементов около 40.

Большинство тяжелых металлов относится к группе микроэлементов, они входят в состав некоторых ферментов, которые необходимы для жизнедеятельности животных, растений, микроорганизмов. Например, медь входит в состав гемоцианина, регулирующего перенос кислорода у некоторых беспозвоночных. Цинк входит в состав тирозиназы, отвечающей за образование меланина. Марганец входит в состав фосфатазы, регулирующей развитие костей. Однако в больших количествах тяжелые металлы могут быть очень опасными для организма. По степени токсичности тяжелые металлы делятся на три класса (таблица 1).

Таблица 1— Классификация тяжелых металлов по степени токсичности

I класс Особо токсичные II класс Токсичные III класс Слабо токсичные
As, Cd, Hg, Pb, Zn Co, Ni, Mo, Cr, Cu Ba, V, W, Mn, Sr

Повышенное содержание концентраций тяжелых металлов в почве может вызывать развитие многих заболеваний:

Co – более 30 мг/кг угнетает синтез витамина С;

Cu – более 60 мг/кг приводит к поражению печени, желтухе, анемии;

Mn – более 400-3000 мг/кг вызывает заболевание костной системы;

Sr – более 600 мг/кг способствует развитию уровской болезни, рахиту, ломкости костей.

Опасность загрязнения почв тяжелыми металлами заключается еще и в том, что они очень медленно выводятся из почвы. Период полураспада тяжелых металлов колеблется в зависимости от вида элемента и почвенно-климатических условий и для некоторых составляет: Zn – 70-150 лет; Cd – 13-1100; Cu – 310-1500; Pb – 740-5900.

Оценка степени загрязнения почв тяжелыми металлами

Оценка степени загрязнения почв тяжелыми металлами выполняется путем сопоставления фактических значений концентраций (валовых и подвижных форм) с нормативными, на основании использования нормативных методов.

В качестве нормативных показателей используются нормированные значения концентраций ТМ в почве или фоновые концентрации. Оценка дается как по отдельным ТМ так и по суммарному индексу загрязнения. Критерием уровня загрязнения почвы является предельно допустимая концентрация (ПДК) химических веществ в пахотном горизонте почвы, которая не должна вызывать прямого или косвенного влияния на соприкасающиеся среды и здоровье человека, а также на самоочищающуюся способность почвы.

В зависимости от пути поступления загрязняющих веществ в сопредельные среды для почв существуют четыре показателя опасности и соответствующие им ПДК:

1. транслокационный отражает переход химических веществ из почвы в растения и возможность накопления токсикантов в выращиваемых продуктах питания и кормах;

2. миграционный водный характеризует поступление химических веществ из почв в грунтовые воды и водоисточники;

3. миграционный воздушный учитывает переход химических веществ из почвы в атмосферу;

4. общесанитарный характеризует влияние химических веществ на самоочищающую способность почвы и микробиоценозы.

Для определения загрязненности почв сельскохозяйственного назначения по отдельным химическим элементам проводят сравнение его фактического содержания с ПДК по валовым или подвижным формам (таблица 2).

Таблица — 2 ПДК химических веществ в почвах и допустимые уровни их содержания по показателям вредности (Госкомприрода СССР, № 02-10 51-2333 от 10.12.90)

Читайте также:  Какое вещество почвы обеспечивает ее плодородие гумус

Наименование веществ

ПДК, мк/кг

почвы с учетом фона

Показатели опасности, мг/кг

транслокационный водный общесанитарный Медь 3,0 3,5 72,0 3,0 Никель 4,0 6,7 14,0 4,0 Цинк 23,0 23,0 200,0 37,0 Кобальт 5,0 25,0 >1000,0 5,0 Фтор 2,8 2,8 — — Хром 6,0 — — 6,0 Сурьма 4,5 4,5 4,5 50,0 Марганец 1500,0 3500,0 1500,0 1500,0 Ванадий 150,0 170,0 350,0 150,0 Свинец 30,0 35,0 260,0 30,0 Мышьяк 2,0 2,0 15,0 10,0 Ртуть 2,1 2,1 33,3 5,0 Свинец +ртуть 20+1 20+1 30+2 30+2 Медь * 55,0 — — — Никель * 85,0 — — — Цинк * 100,0 — — —

* — валовое содержание ориентировочное

Степень опасности загрязнения почв ТМ во многом зависит от ее физико-химических свойств и гранулометрического состава. Основным показателем степени загрязнения почв тяжелыми металлами является транслокационный показатель вредности.

Расчет и оценка загрязнения почв тяжелыми металлами

Оценку степени загрязнения почв ТМ следует выполнять по их валовому содержанию и суммарному показателю загрязнения.

Расчет и оценка загрязнения почв ТМ проводится по следующей схеме:

1. Рассчитывается коэффициент концентрации каждого химического элемента (металла) (Кс):

где С –фактическое содержание ТМ в почве (мг/кг); Сф – фоновое содержание ТМ в почве (мг/кг).

2. Определяется суммарный показатель загрязнения, который отражает сумму вредного воздействия группы элементов:

где n – число определяемых элементов.

3. определяется категория степени загрязнения по схеме оценки почв сельскохозяйственного назначения по загрязнению химическими веществами (таблица 3).

Мероприятия по очистке почв, загрязненных тяжелыми металлами

Приемы снижения токсичности загрязненных тяжелыми металлами почв делятся на профилактические и реабилитационные.

Профилактические приемы основаны на оптимизации технологии производства, создании замкнутых технологических циклов, а также в проведении контроля за отходами промышленного производства, вносимых в почву в качестве мелиорантов и удобрений.

Реабилитационные приемы применяются для ликвидации уже загрязненных почв и являются мерами по санации почв. Под санацией почвы понимается система методов и приемов, приводящих к снижению вредного (токсичного) воздействия ТМ или снижению содержания ТМ до фонового уровня. Санацию почв проводят методами очистки и детоксикации.

Очистка – совокупность приемов и методов, направленных на создание в почвах, подверженных загрязнению, условий, приводящих к снижению концентрации ТМ или уменьшающих содержание до фонового уровня. Она проводится путем промывок, извлечения ТМ из почвы посредством растений (фитомелиорация), удаления загрязненного слоя почвы и др.

Детоксикация – совокупность приемов и методов, приводящих к ослаблению или полному отсутствию токсического действия ТМ, а также направленных на создание в почвах условий, способствующих самоочищению. Она проводится с помощью агромелиоративных приемов (глубокая вспашка, рыхление, щелевание и т.д.), внесение органических и минеральных удобрений, сорбент-мелиорантов, композиционных смесей, а также микроорганизмов, переводящих ТМ в недоступные для растений формы.

Таблица 3 —Оценка почв сельскохозяйственного использования

Источник

Очистки загрязненных почв, от тяжелых металлов

ОЧИСТКИ ЗАГРЯЗНЕННЫХ ПОЧВ, ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ

Загрязнение почв тяжёлыми металлами (ТМ) представляет важную экологическую проблему. Возможно осаждение их в виде труднорастворимых осадков, вымывание за пределы почвенного профиля, извлечение из почв растениями и микроорганизмами, сорбция минералами с высокой ёмкостью катионного обмена и смесью сорбентов. Однако сорбция тяжёлых металлов сорбентами и перевод их в труднорастворимые осадки приводят к созданию депонирующих сред, т.е. создаются отложенные негативные последствия. Вымывание тяжёлых металлов за пределы почвенного профиля водой малоэффективно в связи со слабой растворимостью осадков ТМ в почвах и значительной прочностью их связи в почвенном поглощающем комплексе. Извлечение тяжёлых металлов из почв растениями и микроорганизмами, как правило, невелико по сравнению с их валовым содержанием, и находится на пределе точности определений. Вышеуказанные недостатки существующих методов очистки почв от ТМ определяют необходимость поиска новых методов интоксикации почв [1].

Читайте также:  Нужно ли подкислять почву для жимолости

В понятие ТМ включают все металлы, за исключением щелочных и щелочноземельных элементов. ТМ — группа химических элементов плотностью более 5 г / см3 с относительной атомной массой более 40 а. е. м.

По степени опасности ТМ подразделяют на три группы:

1) высоко опасные: Hg, As, Se, Сd, РЬ, Zn; 2) умеренно опасные: Сг, Со, Мо, Ni, Си, Sb и 3) малоопасные: V, W, Мп, Sr. По свойствам ионов ТМ в воде данные элементы подразделяются на металлы, изменяющие органолептические свойства воды, такие как цвет, запах, вкус (Те, Мп, Zn) и токсикологические (Al, Cd, Си, Мо, Сг). Также существует классификация ТМ по степени подвижности в почвенных экосистемах: первый класс включают Hg, As, Se, Сd, Pb, Zn и второй класс Cr, Со, Мо, Ni, Cu, Sb. Оба класса относятся к металлам первичного рассеивания (такого, как вулканическая деятельность). К третьему классу относятся металлы вторичного рассеивания: V, W, Мп, Sr [2].

Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими.

Среди них можно выделить следующие способы:

Увеличение кислотности почвы повышает возможность загрязнения ее тяжелыми металлами. Поэтому внесение органических веществ и глины, известкование помогают в какой — то мере в борьбе с загрязнением;

Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным [3];

Очистка методом промывки почвы растворами из ПАВ или растворами содержащие сильные окислители — активный кислород, хлорсодержащие соединения, а также щелочные растворы. При выщелачивании содержание тяжелых металлов (Zn, Pb, Cd, Ni, Cu, As) снижается на 85 — 95 % ;

Электрофизический метод очистки — используется для удаления из почвы нефтепродуктов, фенолов и хлорсодержащих углеводородов. В основе метода лежит эффект электролиза воды при прохождении электрического тока через почву;

Термический метод очистки — метод применяется для освобождения почвы от нефтепродуктов, масел, бензина, от некоторых цветных металлов, от галогеносодержащих и органических соединений. Восстановить свойства почвы после такого воздействия можно добавлением компоста или минеральных удобрений [4];

Проведение детоксикации подземных вод, ее откачивание и очистка;

Прогнозирование и устранение миграции растворимой формы тяжелых металлов;

В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.

Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.

Список использованной литературы:

Алексеев Ю. В. Тяжелые металлы в почвах и растениях / Ю. В. Алексеев. Л.: Агропромиздат, 1987.[141 с].

Левин С. В. Тяжелые металлы как фактор антропогенного воздействия на почвенную микробиоту / С. В. Левин, В. С. Гузев, И. В. Асеева и др. // Микроорганизмы и охрана почв / Под ред. Д. Г. Звягинцева. М.: Изд — во МГУ, 1989.[5, с. 47].

Химия окружающей среды / под ред. О. М. Бокриса. М.: Химия, 1982. [672 с].

Кабата — Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях. М., 1989. 377 с.

Источник

IX Международная студенческая научная конференция Студенческий научный форум — 2017

ОЧИСТКА ПОЧВ ЗАГРЯЗНЕННЫХ ТЯЖЕЛЫМИ МЕТАЛЛАМИ ПОЧВ

В настоящее время загрязнение почвенного покрова тяжелыми металлами (ТМ) является одной из важнейших экологических проблем. В почвах они присутствуют в различных химических формах и обладают разными физическими и химическими свойствами с точки зрения химического взаимодействия, мобильности, биологической доступности и потенциальной токсичности. Почва выполняет роль своеобразного барьера, ограничивающего поступление тяжелых металлов в воду, растения, организмы животных и человека [1].

Читайте также:  Выращивание петуний без ошибок

Известно, что самоочищение почв практически не происходит или скорость его чрезвычайно: низка: период полуудаления. цинка составляет до 310 лет, меди -до 1500 лет, кадмия — до ПО лет, свинца — до 5900 лет [5]. На территории Восточно-Казахстанской области, особенно вблизи промышленных; центров: и городов, имеется, загрязнение почв ТМ, причем приоритетными поллютантамц из них. являются в первую очередь медь, цинк, кадмий и свинец [6].Технологии очистки почв, как правило, являются дорогостоящими и во многих случаях разрушают компоненты почвенного биоценоза. В последнее время возникла новая биотехнология, которая использует способность некоторых видов растений перемещать загрязнители из почвы в ткань растений или иммобилизировать их в зоне корней.

Фиторемедиация — комплекс методов очистки сточных вод, грунтов и атмосферного воздуха с использованием зеленых растений. Одно из направлений более общего метода биоремедиации.

На практике широкое практическое применение нашла динатриевая соль этилендиаминтетрауксусной кислоты (ЭДТА) и диэтилентриаимнпентауксусная кислота (ДТПА) за свою относительно невысокую стоимость и способность к образованию прочных комплексов со многими металлами в широком диапазоне рН. Проводимые лабораторные исследования по деметаллизации естественно и искусственно загрязненных металлами почв с использованием ЭДТА, ДТПА, направлены на оптимизацию условий извлечения металлов. Имеются данные об использовании ЭДТА, ДТПА для ремедиации почв в реальных крупномасштабных условиях, и несколько проектов уже реализованы в этой области за рубежом [2].

Свинец поступает в почву с удобрениями, орашаемой водой и пестицидами. В почве ряда территорий значительно превышены допустимые концентрации свинца. В основном, это территории, где размещены металлургические предприятия. Нормативы предельно допустимых концентраций вредных веществ загрязняющих почву определены совместным приказом Министерства здравоохранения РК от 30.01.2004 г. № 99 и Министерства охраны окружающей среды РК от 27.01.2004 г. № 21. Нормативы Pb в почве(мг/кг): Max-26,9; Min-2,5; Кларк-10; ПДК-32,0. Нормальное содержание свинца в надземных органах трав составляют, по данным исследователей от 1,5 мг/кг до 40,0 мг/кг сухой массы [3].

Фитовосстановление является надежной технологией стабилизации и удаления некоторых загрязнителей почвы. Как и любая другая технология, оно обладает своими преимуществами и недостатками.

2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Опытный почвенный материал был взят с посевных площадей кукурузы (Z. mays) и подсолнуха (H. annuus) в районе поселения Балабургем г.Кентау. Уровень загрязненности почв цинком- 472.9450 мг/кг, свинцом — 448.6450мг/кг. Исследование проводилось в 4 параллелях. В опытах в качестве проб были взяты кукуруза (Zeamays L.) гибридные сорта ‘’Bora’’и подсолнух (Helıanthus annuus) сорта‘’Tekirdac yerli’’.

3. РЕЗУЛЬТАТЫ И АНАЛИЗ:

3.1. Влияние рН почвы на фитоэкстракцию растений кукурузы и подсолнуха, выращенных в почвах с внесением ЭДТА и ДТПА.

С увеличением вводимого количества ЭДТА и ДТПА показатели рН почвы понижались. Разница между самым высоким введенным количеством и показателем пробной почвы составляет 0.9 единиц (рис.1)

Рис — 1. Влияние рН почвы на ЭДTA и ДTПA

3.3.Влияние количества ЭДТА и ДТПА, введенных в загрязненую свинцом почву на сухую корневую массу и наземную часть растении кукурузы (Z.mays) и подсолнуха (H.annuus).

В контрольном варианте наблюдается рост растений в условиях без токсического влияния ЕДТА и ДТПА

Повышение введения ЭДТА и ДТПА отрицательно влияет на интенсивный рост растений и наблюдается уменьшение растительной массы.

При проведении опытов с уменьшением влаги в растениях уменьшается сухая наземная растительная масса. Соответственно, с уменьшением влаги в корневой части, понижаются показатели количества сухой корневой массы (Таблица 3.2.).

Таблица 3.2. Влияние ЭДTA и ДTПA на сухую и влажную массу кукурузы и подсолнуха*

Источник

Adblock
detector