Полевое определение горной породы методом Филатова
Способ Филатова заключается в оценке гранулометрического состава грунта, также он известен как метод шнура.
Ход анализа. Образец почвы или грунта сначала растереть между пальцами и определить его структуру. Затем слегка смочить и раскатать между ладонями. По тому, что получится в результате, определяется механический состав пробы.
Вид образца в плане после раскатывания
Шнур не образуется — песок
Зачатки шнура — супесь
Шнур дробится при раскатывании —легкий суглинок
Шнур сплошной кольцо при свертывании распадается — средний суглинок
Шнур сплошной кольцо с трещинами —тяжелый суглинок
Шнур сплошной кольцо дельное — глина
Глинистые почвы в сухом состоянии с большим трудом растираются между пальцами, но в растертом состоянии ощущается однородный тонкий порошок. Во влажном состоянии эти почвы сильно мажутся, хорошо скатываются в длинный шнур, из которого легко можно сделать кольцо.
Суглинистые почвы при растирании в сухом состоянии дают тонкий порошок, в котором прощупывается некоторое количество песчаных частиц. Во влажном состоянии раскатываются в шнур, который разламывается при сгибании в кольцо. Легкий суглинок не дает кольца, а шнур растрескивается и дробится при раскатывании. Тяжелый суглинок дает кольцо с трещинами.
Супесчаные почвы легко растираются между пальцами. В растертом состоянии явно преобладают песчаные частицы, заметные даже на глаз. Во влажном состоянии образуются только зачатки шнура.
Песчаные почвы состоят только из песчаных зерен с небольшой примесью пылеватых и глинистых частиц. Почва бесструктурна, не обладает связностью.
Окончательное уточнение механического состава почвы производится в камеральный период путем специального лабораторного анализа, и на основании его дается название почвы.
Интерпретация результатов
24.06.11 было произведено геоэкологическое исследование территории.
Температура воздуха составляла 20 С, давление – 759 мм.рт.ст., облачность – около 6 баллов, влажность – 83%, ветер южный 1-3 м/c, дождя не было.
Точка, в которой проводились наблюдения, находится в 200м на юго-восток от METRO, 50м на юг от ЛЭП. Была встречена различная растительность: клевер, осока, крапива, ромашка, лопух, мышиный горошек, различные злаковые, борщевик, рябина, береза.
Для определения гранулометрического состава почвы был произведен отбор проб методом конверта. Определение гранулометрического состава производилось методом Филатова. Исследуемая почва – средний суглинок.
Левый берег в исследуемой точке имеет надпойменную террасу, а также прямолинейное русло, U-образное дно и, следовательно, корытообразную форму. Высота левого берега достигает 3м. На берегу довольно часто встречается бытовой мусор, имеется автостоянка. Отмечено присутствие коллектора.
Высота правого берега достигает 5м. Он заросший. Так же встречается бытовой мусор. Присутствует промышленный объект( возможно, завод или склад).
На поверхности воды нередко встречается тополиный пух, вода мутная, коричнево-зеленого цвета. У берегов присутствуют пятна мазута и нефтяные пятна.
На левом берегу были отмечены серые пятна сточных вод(это хозяйственно-бытовые воды, скорее всего от METRO). Коллектор на левом берегу имеет железобетонную трубу диаметром 1м.
На правом берегу коллектор представляет собой железную трубу диаметром 60см. Она погружена в воду, поэтому определение стока не представляется возможным.
Для определения гранулометрического состава почвы был произведен отбор проб методом конверта. Определение гранулометрического состава производилось методом Филатова. Исследуемая почва – средний суглинок.
Была изучена территория на расстоянии 50 м по течению и на расстоянии 50 м против течения.
50 метров против течения несколько изменился характер растительности: клевер, подорожник, осока, злаковые, малина, мышиный горошек, тополь, береза, осина. На правом и левом берегу есть бытовой мусор. Берега заросшие. На левом берегу крупное костровище.
На расстоянии 30 по течению от точки у левого берега расположен заброшенный железобетонный пирс, протяженностью 40 метров. Напротив него на правом берегу находится железобетонная канализационная труба диаметром 80 см. Характер стока невозможно определить, поскольку труба погружена в воду. Выше данной трубы на расстоянии 2 м от кромки воды расположена еще одна труба меньшего диаметра (30 см), из которой осуществляется выброс пара.
Источник
Полевые и лабораторные методы определения гранулометрического состава почв
КЛАССИФИКАЦИЯ МЕХАНИЧЕСКИХ ЭЛЕМЕНТОВ ПОЧВ (Н.А.Качинский, 1965)
Классификация гранулометрических элементов
Гранулометрический (механический) состав почвы — 1) механический состав почвы, характеризующий относительное содержание в почве частиц различной величины; 2)весовое соотношение в почве частиц разного размера. Под частицами разного размера подразумеваются группы частиц, диаметр которых лежит в определенных пределах. Каждая из таких групп называется гранулометрической (механической) фракцией почвы.
Группировка механических элементов по размерам называется классификацией механических элементов. В нашей стране применяется классификация Н.А. Качинского.
Название механических элементов | Диаметр механических элементов, мм |
Физический песок (> 0,01 мм) | |
Камни | > 3 |
Гравий | 3–1 |
Песок крупный | 1–0,5 |
Песок средний | 0,5–0,25 |
Песок мелкий | 0,25–0,05 |
Пыль крупная | 0,05–0,01 |
Физическая глина ( 1 мм) с точки зрения водно-физических свойств не активна, инертна; она не способна удерживать влагу. Песок (d = 1,0–0,05 мм) обладает слабой водоудерживающей способностью. Пыль (d = 0,05–0,001 мм) очень хорошо удерживает воду и обладает хорошей водоподъемной способностью; ил (d Точные определения гранулометрического состава производятся на основании лабораторного анализа. В полевых условиях гранулометрический состав почвы определяют упрощенными способами: «органолептическим» — методом скатывания между пальцами, сухим (метод «зеркала») и мокрым растиранием. Определение может быть кратким (с учетом содержания физического песка и физической глины) и подробным (с учетом дополнительной характеристики по преобладающей фракции). Упрощенные полевые методы при наличии навыка и тщательном выполнении дают результаты, близкие к полученным в лаборатории с помощью приборов. В полевых условиях помимо сухого и мокрого растирания для определения гранулометрического состава применяют метод скатывания шнура, скатывания шарика, пробу ножом по стенке разреза, а на пахотных угодьях — по структурности пашни. Ниже приводится описание техники выполнения этих методов. 1. Сухое растирание (метод «зеркала»). Небольшой комочек воздушно-сухой почвы ( размером с горошину) растирают пальцами и высыпают на сухую ладонь. Почву втирают указательным пальцем в кожу, затем ладонь переворачивают и слегка встряхивают. На ладони остается так называемое «зеркало» за счет оставшихся в бороздках и порах кожи наиболее мелких частиц (фракции физической глины). По «зеркалу» определяют гранулометрический состав почвы. Рыхлые пески «зеркала» почти не дают; у связных песков оно слабое, редкое, но все же ясно заметное; у супесей — ясно заметное, но прерывистое; у легких суглинков — хорошее, почти сплошное и у средних суглинков — сплошное «зеркало». Более тяжелые по составу почвы трудно растирать пальцем в сухом состоянии. Обычно они имеют хорошо выраженную микроструктуру и поэтому могут показаться опесчаненными и даже дать прерывистое «зеркало», что ошибочно укажет на более легкий гранулометрический состав. Методом сухого растирания хорошо определять гранулометрический состав лишь песчаных, супесчаных и легкосуглинистых почв. С его помощью можно дать и дополнительную характеристику гранулометрического состава. Пылеватые почвы и породы при растирании дают ощущение мягкости или «бархатистости»; песчанистые — жесткости, шероховатости; пылевато-песчанистые — мягкости, но и явного присутствия песчинок ( более трех ). 2 . Мокрое растирание. Небольшую щепотку почвы смачивают водой и растирают на ладони . Рыхлые пески не оставляют почти никакого следа, связные — слегка загрязняют ладонь; супеси загрязняют ладонь сильнее; легкие и средние суглинки почти сплошь замазывают кожу, а тяжелые — сплошь; глины дают однородную мажущуюся массу.
3. Скатывание шнура (по Н. А. Качинскому). Почву смачивают и разминают пальцами до консистенции теста. В таком состоянии вода не отжимается, а почва блестит и мажется. Хорошо размятую почву раскатывают между ладонями и шнур сворачивают в колечко (толщина шнура около 3 мм, диаметр кольца около 3 см). Пески не образуют шнура; супеси дают зачатки шнура; у легких суглинков шнур образуется, но распадается на дольки; средние суглинки дают сплошной шнур, но при свертывании в кольцо он разламывается на дольки; шнур образуется сплошной, но при свертывании в кольцо трескается — тяжелый суглинок; глины дают сплошной шнур, который свертывается в кольцо, не трескаясь. Сильнокарбонатные почвы следует смачивать не водой, а 8-10 %-ной соляной кислотой для разрушения почвенной микроструктуры. 4. Скатывание шарика. Из сырой или смоченной размятой почвы скатывают шарик диаметром 2-3 см, который затем расплющивают в тонкую лепешку. У рыхлых песков шарик не образуется; у связных песков — легко крошится; у супесей — имеет шероховатую поверхность и при расплющивании распадается на куски; у суглинков — гладкую поверхность, при расплющивании глубоко растрескивается по краям; у глинистых — блестящую поверхность, причем у легкоглинистых — при расплющивании лепешка с незначительными трещинами по краям, а у средне- и тяжелоглинистых — без трещин. 5. Проба ножом. Лезвием ножа делают черту и срез почвы. Черта осыпается, поверхность среза шероховатая, иод ножом слышен треск — песчанистая почва; черта с разорванными краями от выпавших песчинок, поверхность среза шероховатая — супесчаная; черта ровная, шире лезвия ножа, поверхность среза ровная, матовая, под ножом треска не слышно — суглинистая; черта узкая, равна по ширине лезвию, срез гладкий, блестящий — глинистая почва. 6. Определение механического состава почвы по структурности пашни. Почвы разного гранулометрического состава обладают различной способностью образовывать структурные агрегаты. Наблюдая структурность недавно обработанных (заборонованных) участков, можно заметить, что рыхлопесчаные почвы состоят из раздельночастичной бесструктурной массы, связнопесчаные — имеют на поверхности отдельные комки, у рыхлопесчаных — комки занимают менее 1/3 поверхности, у связносупесчаных — до 1/2, у легкосуглинистых — около 3/4, у среднесуглинистых — вся поверхность покрыта комками размером от голубиного до куриного яйца, у тяжелосуглинистых и глинистых — комки покрывают всю поверхность и среди них встречаются глыбы до 10 и более сантиметров. Перед лабораторным анализом проводят подготовку образца, которая заключается в полном разделении почвы на элементарные частицы. Для этого почву растирают, обрабатывают кислотой (для удаления карбонатов) и щелочами, а затем кипятят. Подготовленную суспензию переносят в мерный цилиндр для отбора фракций. Лабораторные методы основаны на различной скорости осаждения фракций разного размера в стоячей воде. Скорость осаждения частиц пропорциональна их радиусу в квадрате. Сущность пипеточного метода заключается в том, что с помощью специальной пипетки с определенной глубины взмученной суспензии через определенное время берут пробы по 20. 25 см3. Пробы выпаривают в заранее взвешенных стаканчиках или чашках, высушивают и взвешивают. По массе фракций в каждой пробе рассчитывают гранулометрический состав почвы. При этом учитывают содержание таких цементирующих веществ, как карбонаты кальция. Почва, в которой содержится значительное количество карбонатов, обладает низкой водопроницаемостью, большой сопротивляемостью почвообрабатывающим орудиям и является тяжелой. Если же такую почву промыть кислотой (чтобы удалить карбонаты), то в результате анализа мы получим данные, указывающие на высокую водопроницаемость и легкую податливость обработке, то есть эта почва будет иметь совершенно иные свойства, чем природная. Источник Почвоведение и инженерная геологияМасса пустого бюкса (а), г ______________ Масса бюкса с почвой до сушки (в), г _________________ Масса бюкса с почвой после сушки (с), г _________________ Гигроскопическую влажность А (в %) вычисляют по формуле Для пересчета результатов анализов с воздушно-сухой почвы на абсолютно сухую применяется коэффициент гигроскопичности который вычисляют по формуле Оборудование и материалы. 1. Алюминиевые бюксы. 2. Технохимические весы. 3. Термостат или сушильный шкаф. 4. Коробка с почвой. 5. Мерные цилиндры на 100 см 3 и 50 см 3 . 6. Раствор хлорида кальция. 7. Дистиллированная вода. 2.3 Определение гранулометрического состава почв методом М.М. ФилатоваТвердая фаза почвы состоит из частиц различных размеров, которые называются механическими элементами или гранулами. Сумму всех механических элементов почвы размером меньше 0,01 мм называют физической глиной, а больше 0,01 мм – физическим песком. Кроме того, выделяют мелкозем, в который входят частицы меньше 1 мм, и почвенный скелет – частицы больше 1 мм. Отдельные группы механических элементов по-разному влияют на свойства почвы. Это объясняется неодинаковым их минералогическим и химическим составом и разными физическими и физико-химическими свойствами. Относительное содержание в почве или породе механических элементов называется гранулометрическим составом, а количественное определение их – гранулометрическим анализом. В полевых условиях и в лаборатории гранулометрический состав почв приближенно определяют по внешним признакам и на ощупь. Для точного его установления применяют лабораторные методы, позволяющие находить количество всех групп механических элементов, слагающих почву или породу. Все группы гранулометрического состава почв и пород (песок, супесь, суглинок песчанистый, суглинок пылеватый и т. д.) можно различать по ряду признаков. Зная эти признаки и имея соответствующий навык, можно быстро и с достаточной точностью определять гранулометрический состав в полевых условиях. Техника определения гранулометрического состава методом М.М. Филатова. Определение содержания песка в почве проводится так. В мерный цилиндр вместимостью 100 см 3 насыпают ту же почву, в которой определялась глина, так, чтобы она при уплотнении заняла объем 10 см 3 . Затем приливают воды до 100 см 3 , размешивают стеклянной палочкой и дают отстояться 90 с, в течение которых частицы песка осядут на дно цилиндра, а частицы пыли и глины останутся взвешенными в воде. Осторожно сливают мутную оводуисновавоставшийсяосад 3 кдоливаютводыдо100 см, хорошо размешивают, дают отстояться в 90 с и снова сливают мутную воду. Все это проделывают до тех пор, пока после очередного отстаивания в течение 90 с вода остается совершенно прозрачной. Тогда измерив объем оставшегося песка, высчитывают его количество, принимая каждый см 3 осевшей почвы за 10 % песка. Определение содержания глинистых частиц в почве производится нижеследующим образом. В мерный цилиндр вместимостью 50 см 3 насыпают почву, просеянную через сито с отверстиями в 1 мм так, чтобы при легком уплотнении (путем легкого постукивания цилиндра) она заняла объем 5 см 3 . Затем приливают 30 см 3 воды и 5 см 3 хлорида кальция в качестве электролита. Хорошо размешивают содержимое стеклянной палочкой и, долив цилиндр водой до 50 см 3 , оставляют на 30 мин отстаиваться. После этого определяют приращение почвы, пересчитав его на 1 см 3 сухой почвы и вычисляют процентное содержание глинистых частиц по нижеследующей таблице. Процент пыли определяют, вычитая из 100 процентов содержание песка и глины. Название почвы по гранулометрическому составу дают, учитывая соотношение песка и глины в почве. Если на 1,0 часть глины приходится 0,8–1,0 части песка, почва называется глинистой, при 2–3 частях песка – суглинистой тяжелой, при 3– 4 частях – среднесуглинистой, при 4–5 частях – легкосуглинистая, при 7–8 – супесчаной, при 9–10 частях – песчаной. Техника определения гранулометрического состава в поле (метод раскатывания). Гранулометрический состав можно определить в сухом и влажном состоянии. Для его определения образец растертой почвы увлажняют и перемешивают до тестообразного состояния, при котором почвы обладают наибольшей пластичностью. При определении гранулометрического состава карбонатных почв и пород применяют вместо воды 10 %-ю НСl с целью разрушения водопрочных агрегатов. Из подготовленной почвы на ладони скатывают шарик и пробуют раскатать его в шнур толщиной около 3 мм, затем свернуть в кольцо диаметром 2–3 см, по которому и судят о гранулометрическом составе. 1. Наряду с мелкоземом, т. е. частицами меньше 1 мм, в почве много более крупных обломков горных пород – каменистые почвы. 2. В почве более 90 % песчаных частиц и небольшое содержание физической глины. В сухом состоянии комок почвы легко раздавливается. Из влажного образца нельзя скатать ни шнура, ни даже шарика – песчаная почва. 3. Почва похожа на песчаную, но содержит несколько больше физической глины. В сухом состоянии образует непрочные комки. Из влажного образца нельзя скатать шнур, но можно скатать шарик величиной с грецкий орех – супесчаная почва. 4. В почве содержится до 60 % физической глины. При царапании ножом сухой глыбки образуется черта. Из влажного образца можно скатать шарик, который при сдавливании образует лепешку с трещинами по краям. При раскатывании шарика образуется шнур, который при изгибании образует трещины – суглинистая почва. 5. В почве содержится до 80 % и более физической глины. Сухие комки очень твердые и плохо поддаются раздавливанию между пальцами. При растирании ощущается очень однородная масса. Из влажного образца можно скатать шарик, который при раздавливании образует лепешку без трещин по краям. При раскатывании шарика образуется длинный тонкий шнур, который не ломается и не дает трещин при изгибании – глинистая почва. Форма записи результатов Оборудование и материалы. 1. Технохимические весы. 2. Коробка с почвой. 3. Мерные цилиндры на 100 см 3 и 50 см 3 . 4. Раствор хлорида кальция. 5. Дистиллированная вода. 6. Образец почвы, просеянной через сито 1 мм. 7. Стеклянные палочки. Вопросы для самоконтроля1. Какие первичные минералы широко распространены в рыхлых породах, почвах и почему? 2. Какие минералы называются вторичными и какова их роль в почвовобразовании и плодородии почв? 3. Как характеризуются гранулы (механические элементы) и чем отличаются их группы по составу и свойствам? 4. Что называется гранулометрическим составом и каковы принципы построения классификации почв по гранулометрическому составу? 5. Как проявляется влияние гранулометрического состава почв (легких, средних и тяжелых) на их агрономические свойства? 2.4 Определение агрегатного состава почвы и водопрочности почвенных агрегатов методом Н.И. СаввиноваПод структурой почвы понимают совокупность агрегатов или структурных отдельностей различной величины, формы, пористости, механической прочности и водопрочности. Агрегаты диаметром больше 0,25 мм называют макроагрегатами, мельче 0,25 мм – микроагрегатами. Агрономически ценной является комковато-зернистая структура с размером агрегатов от 0,25 до 10,0 мм, обладающих пористостью и водопрочностью. Такая структура обусловливает наиболее благоприятный водно-воздушный режим почвы. Водопрочными называются агрегаты, которые противостоят размывающему действию воды. В задачу агрегатного анализа входит: 1) определение содержания агрегатов того или иного размера в пределах 0,25–10 мм; 2) выявление количества водопрочных агрегатов из выделенных структурных отдельностей. Число агрегатов определенного размера находят методом «сухого» агрегатного анализа, а водопрочных агрегатов – методом «мокрого» агрегатного анализа. Метод «сухого» агрегатного анализа. Из образца нерастертой воздушно-сухой почвы берут среднюю пробу 0,5–2,5 кг. Осторожно выбирают корни, гальку и другие включения. Среднюю пробу просеивают через колонку сит с диаметром отверстий 10; 5; 3; 2; 1; 0,5; 0,25 мм. На нижнем сите должен быть поддон. Почву просеивают небольшими порциями (100–200 г), избегая сильных встряхиваний. Когда сита разъединяют, каждое из них слегка постукивают ладонью по ребру, чтобы освободить застрявшие агрегаты. Агрегаты с сит переносят в отдельные фарфоровые или алюминиевые чашки. Когда всю среднюю пробу просеют и разделят на фракции, каждую фракцию взвешивают на технохимических весах и рассчитывают ее содержание в процентах от массы воздушносухой почвы. Коэффициент структурности при сухом просеивании определяют по формуле Главное качество почвенной структуры – водопрочность, т. е. способность комочков противостоять размыванию водой. Чем богаче почва минеральными и органическими коллоидами, тем шире возможности для ее агрегации. Процесс образования структуры протекает под влиянием коагуляции коллоидов, склеивания механических элементов коллоидными пленками, а также под воздействием корней растений, гиф грибов, оплетающих почвенные комки и зерна и проникающих внутрь их. Особенно большое значение для образования структуры почвы имеет гумус. Как коллоидное вещество, он под влиянием катионов кальция и магния способен переходить в необратимую форму и давать прочный и не растворимый в воде гель. Этот гель, играющий роль клея, и придает структурным агрегатам водопрочность. Метод «мокрого» агрегатного анализа. Навеску почвы 50 г составляют из отсеянных структурных фракций. Из каждой фракции отвешивают на технохимических весах количество структурных отдельностей (в граммах), равное половине процентного содержания данной фракции в почве. Фракцию меньше 0,25 мм не включают в среднюю пробу, чтобы не забивались нижние сита при просеивании почвы. Поэтому навеска всегда бывает меньше 50 г. Подготавливают набор из пяти сит с диаметром отверстий (сверху вниз) 3; 2; 1; 0,5; 0,25 мм. Сита скрепляют металлическими пластинками и устанавливают в баке с водой так, чтобы над бортом верхнего сита находился слой воды 5–6 см. Навеску высыпают в литровый цилиндр и насыщают водой, которую приливают осторожно по стенкам цилиндра, чтобы вытеснить из почвы воздух, не защемляя его (защемленный воздух разрушает агрегаты). Увлажненную почву оставляют на 10 мин в покое, после чего цилиндр доливают водой доверху. Для полного удаления воздуха цилиндр закрывают часовым стеклом, наклоняют до горизонтального положения и ставят вертикально. Когда воздух будет удален, цилиндр закрывают пробкой, следя, чтобы под ней не осталось воздуха, и быстро переворачивают вверх дном. Держат в таком положении, пока основная масса агрегатов не упадет вниз. Затем цилиндр переворачивают и ждут, когда почва достигнет дна. Так повторяют 10 раз, чтобы разрушить все непрочные агрегаты. При последнем обороте оставляют цилиндр дном кверху, переносят к набору сит и погружают в воду над верхним ситом. Под водой открывают пробку цилиндра и, не отрывая его от воды, плавными движениями распределяют почву на поверхности верхнего сита. Через минуту, когда все агрегаты больше 0,25 мм упадут на сито, цилиндр закрывают пробкой под водой, вынимают из воды и отставляют. Почву, перешедшую на сито, просеивают под водой следующим образом: набор сит поднимают в воде, не обнажая оставшихся агрегатов на верхнем сите, и быстрым движением опускают вниз. В этом положении держат 2–3 секунды, чтобы успели просеяться агрегаты, затем медленно поднимают вверх и быстро опускают вниз. Сита встряхивают 10 раз, затем вынимают из бака два верхних сита, а нижние встряхивают еще 5 раз. Оставшиеся на ситах агрегаты смывают струёй воды в большие фарфоровые чашки. Избыток воды в чашках сливают. Из больших чашек агрегаты смывают в заранее взвешенные маленькие чашечки, затем высушивают на водяной бане до воздушно-сухого состояния и взвешивают. Масса фракций, умноженная на 2, дает процентное содержание водопрочных агрегатов того или иного размера. Процент агрегатов меньше 0,25 мм определяют вычитанием из 100 суммы процентов полученных фракций. Таблица 5 – Оценка структурного состояния почвы Коэффициент при мокром просеивании определяют по формуле Форма записи результатов Оборудование и материалы. 1. Образец нерастертой почвы массой 500 г. 2. Колонка почвенных сит. 3. Технохимические весы. 4. Алюминиевые или фарфоровые чашки. 5. Мерные цилиндры на 1000 мл. 6. Водяная баня или электроплитка. 7. Кастрюля с водой вместимостью 10 л. 8. Резиновые груши. Вопросы для самоконтроля1. Что такое структура почвы и в чем особенности ее оценки в морфологическом и агрономическом отношении? 2. Какие процессы определяют образование структуры, ее утрату и каковы приемы восстановления структуры почвы? 3. В чем заключается роль структуры почвы в формировании ее свойств, режимов и плодородия? 2.5 Определение общих физических свойств почвы2.5.1 Определение плотности твердой фазы почвы пикнометрическим методомПочва как физическое тело состоит из четырех фаз: твердой, жидкой, газообразной и населения почвы. Твердая фаза представлена минеральными и органическими веществами, жидкая – водой с растворенными в ней соединениями (почвенный раствор), а газообразная – почвенным воздухом. Плотностью твердой фазы почвы называется отношение массы твердой фазы почвы в сухом состоянии к массе равного объема воды при температуре +4 °C. Эта величина зависит от природы входящих в почву минералов и от количества органического вещества. В среднем плотность твердой фазы у большинства почв равна 2,50–2,65 г/см 3 и изменяется в зависимости от указанных причин. Чем больше гумуса содержит почва, тем меньше плотность твердой фазы. Так, чернозем с 10 %-м содержанием гумуса имеет плотность твердой фазы около 2,4 г/см 3 , а дерново-подзолистая почва с 2,5 %-м содержанием гумуса – 2,6 г/см 3 . У торфов плотность твердой фазы зависит от степени разложения и зольности торфа и колеблется от 1,4 до 1,7 г/см 3 . Некоторые скелетные почвы имеют плотность твердой фазы 3,0 г/см 3 . Знание плотности твердой фазы почвы необходимо для вычисления пористости почвы. Кроме того, плотность твердой фазы почвы дает некоторую ориентировку в петрографическом составе входящих в почву минералов и указывает на соотношение минеральной и органической частей. Плотность твердой фазы почвы определяют пикнометрическим способом. Для ее вычисления надо знать объем и массу твердой фазы почвы. При пикнометрическом способе объем твердой фазы находят путем вытеснения воды взятой навеской почвы. 1. В колбу наливают около 250 мл дистиллированной воды, кипятят примерно полчаса для удаления из нее растворенного воздуха и охлаждают до комнатной температуры. 2. Берут пикнометр (или мерную колбу) на 100 мл, наливают в него до метки прокипяченную и охлажденную дистиллированную воду, измеряют температуру и взвешивают на аналитических весах. 3. Из просеянного через миллиметровое сито образца отвешивают на аналитических весах в стеклянный стаканчик или в какуюлибо другую тару 9–10 г воздушно-сухой почвы. Одновременно берут навеску для определения гигроскопической влаги, если ее не определяли. 4. Из взвешенного пикнометра выливают немного больше 1/2 объема воды и высыпают в него навеску почвы. Стаканчик, в котором находилась почва, снова взвешивают и по разности между стаканчиком с почвой и пустым стаканчиком находят массу почвы, взятой для определения плотности твердой фазы. 5. Почву и воду в пикнометре кипятят 30 мин для удаления воздуха, доливая дистиллированной водой по мере выкипания до половины его объема. 6. После кипячения пикнометр с содержимым охлаждают до комнатной температуры и доливают прокипяченную и охлажденную воду до метки, вытирают снаружи фильтровальной бумагой и взвешивают на аналитических весах. Нужно следить, чтобы температура пикнометра с водой и почвой и первоначальная температура пикнометра с водой были одинаковыми. 7. Плотность твердой фазы почвы вычисляют по формуле где d – плотность твердой фазы, г/см 3 ; А – навеска сухой почвы, г; В – масса пикнометра с водой, г; С – масса пикнометра с водой и почвой, г. Форма записи результатов 2.5.2 Определение плотности почвы из рассыпного образцаПлотностью почвы называют массу единицы ее объема в естественном сложении. При определении плотности узнают массу почвы в определенном объеме со всеми порами. Определяя плотность твердой фазы, узнают массу твердой фазы почвы, занимающей весь объем, без пор. Таким образом, плотность сложения одной и той же почвы всегда будет меньше плотности ее твердой фазы. Плотность характеризует взаимное расположение почвенных частиц и агрегатов и выражается в граммах на 1 см 3 . Она зависит от гранулометрического состава, содержания органического вещества и структурного состояния почвы. Плотность сложения минеральных почв колеблется от 0,8 до 1,8 г/см 3 . В верхних горизонтах черноземных почв плотность составляет 1,0–1,2, в нижних – 1,3–1,6 г/см 3 . У почв с небольшим содержанием гумуса плотность около 1,3–1,6 г/см 3 . В нижних горизонтах почв с плотным сложением она составляет 1,6–1,8 г/см 3 . Плотность целинных верховых болотных почв 0,04–0,08, старопахотных низинных болотных почв 0,2–0,3 г/см 3 . Знание плотности почвы позволяет высчитывать запасы воды, питательных веществ в пахотном или любом другом горизонте почвы. Таким образом, определение плотности почвы имеет важное агрономическое значение. От плотности почвы зависят водно-воздушные, тепловые и биологические свойства. С уплотнением суглинистых и глинистых почв уменьшается общая пористость и объем пор аэрации, увеличивается объем неактивных пор, в которых вода практически недоступна растениям, снижается скорость фильтрации, затрудняется распространение корней. Чрезмерно рыхлое состояние почвы также неблагоприятно, так как почва при этом быстро иссушается, нарушается контакт семян, корней растений с почвой. Отрицательное влияние повышенной плотности на легких почвах (пески и супеси) сказывается слабее или вовсе не сказывается для ряда культур. В лабораторных условиях плотность сложения почвы определяют из рассыпного образца с нарушенным сложением почвы. Но такой метод не дает действительного представления о плотности сложения почвы в ее естественном залегании. 1. Берут цилиндр (бюкс). Взвешивают его. Насыпают в цилиндр почву из нерастертого образца, уплотняя ее по мере наполнения (постукивают дном цилиндра о ладонь руки). Измеряют высоту насыпного слоя почвы, диаметр цилиндра и определяют объем почвы. Взвешивают цилиндр с почвой. 2. Вычисляют плотность сложения почвы (dV) по формуле где d v – плотность сложения почвы, г/см 3 , P – масса сухой почвы, г; V – объем почвы, см 3 . Объем цилиндра вычисляем по формуле где ?= 3,14; r – радиус цилиндра, см; h – высота цилиндра, см. Форма записи результатов Таблица 6 – Оценка плотности сложения суглинистых и глинистых почв (по Н.А. Качинскому) 2.5.3 Расчет общей пористостиМежду механическими элементами и агрегатами в почве имеются промежутки – поры. В них размещаются вода, воздух, микроорганизмы, корни растений. Объем пор в почве, их размер зависят от гранулометрического состава, структуры и плотности почвы. Количество пор и соотношение их по размерам определяют важнейшие свойства почв, и прежде всего водно-воздушные. Суммарный объем пор в почве в единице объема называется общей пористостью. Общая пористость подразделяется на капиллярную и некапиллярную (поры аэрации). Некапиллярные поры обычно заняты почвенным воздухом. Вода в них находится под действием гравитационных сил и не удерживается. В капиллярных порах размещается вода, удерживаемая менисковыми силами. Поры, в которых находятся капиллярная вода, почвенный воздух, микроорганизмы и корни растений, называются активными. К неактивным относят поры, занимаемые связанной водой (прочносвязанная и рыхлосвязанная вода). В агрономическом отношении важно, чтобы почвы располагали большим объемом капиллярных пор и при этом имели некапиллярную пористость не менее 20–25 % от общей пористости. Если при влажности почвы, соответствующей предельной полевой влагоемкости, в почве находится наибольшее количество капиллярноподвешенной влаги, а объем пор аэрации составляет величину меньше указанной, необходимы агротехнические или мелиоративные мероприятия по улучшению аэрации почв. Общую пористость можно рассчитать на основании плотности твердой фазы и плотности сложения почвы по формуле где Ск – общая пористость, проц.; d – плотность твердой фазы почвы, г/см 3 ; dV – плотность сложения почвы, г/см 3 . Для оценки общей пористости (в %) суглинистых и глинистых почв Н.А. Качинский предлагает нижеследующую шкалу: >70 Избыточно пористая. Почва вспушена. 55–65 Отличная. Культурный пахотный слой. 50–55 Удовлетворительная для пахотного слоя. Источник ➤ Adblockdetector |