Меню

Определение подвижного фосфора почве

Практическое занятие &#8470 8 (часть 2)

Определение в почве подвижных фосфатов по Чирикову и Кирсанову. Оценка обеспеченности почв фосфором. Потребность в фосфорных удобрениях

1. Основные теоретические положения

Фосфор является одним из основных элементов питания растений. Его содержание в растениях значительно ниже, чем азота, калия, и кальция. Недостаточное содержание в почве усвояемых фосфатов обусловливает низкие урожаи. Вместе с тем, на почвах с достаточно высоким содержанием легкорастворимых фосфатов внесение под культуры суперфосфата при посеве обеспечивает существенный прирост урожайности.

В отличие от минеральных форм почвенного азота, которые неустойчивы и легко теряются в результате улетучивания и вымывания почвенные фосфаты весьма устойчивы. Причиной недостатка фосфора для растений является низкая растворимость фосфорных соединений

Недостаток фосфора вызывает последствия, которые аналогичны последствиям недостатка азота. Стебли бывают тонкими, листья мелкими, боковое ветвление ограниченное. Развитие почек весной задерживается, цветение скудное, происходит преждевременное опадение листьев. Так же, как и азот, фосфор реутилизируется в растении. Он оттекает из взрослых листьев в молодые.

2. Формы фосфора в почве, их доступность растениям

Основной формой минерального фосфора в почве являются апатиты — природные и вторичнообразованные. Минеральные формы находятся преимущественно в виде соединений ортофосфорной кислоты с ионами кальция, магния, железа и алюминия. Значительная доля ионов фосфора адсорбируется на положительно заряженной части почвенного поглощающего комплекса (базоидами). Адсорбированные ионы фосфора удерживаются прочнее катионов.

В почве одновременно протекают разнонаправленные процессы. Происходят иммобилизация органическим веществом фосфора почвенного раствора и минерализация органических веществ, которая сопровождается поступлением фосфора в почвенный раствор. В почвенный раствор поступает фосфор в результате десорбции его из минеральных соединений, и происходит сорбция (осаждение) фосфатов почвенного раствора минеральной частью почвы.

Уровень фосфорного питания растений зависит от растворимости минеральных форм фосфора. Характер реакции почвенного раствора обусловливает преобладание одного из трех ионов фосфора. В интервале кислых и нейтральных почв преобладает монофосфат – одновалентный ортофосфат – H2PO4, в щелочной среде – при pH выше 7,2 доминирует двухвалентный ион HPO4. Ион PO4 появляется при pH выше 10. Наиболее легко абсорбируется растениями монофосфат. Количество фосфора в почвенном растворе (H2PO4, H2PO4), как правило не превышает 1 кг/га пахотного слоя почвы.

Считается, что растения почти весь необходимый для них фосфор извлекают из почвенного раствора. На формирование урожая 1ц/га зерна яровой пшеницы затрачивается около одного килограмма фосфора. Следовательно, содержание фосфатов в почвенном растворе постоянно восполняется. Адсорбированный и другие твердые формы фосфора находятся в равновесном состоянии с фосфором почвенного раствора и между собой. Концентрация почвенного раствора сохраняется. При этом фосфору свойственна более низкая концентрация в почвенном растворе, чем азоту и калию, а также и низкая скорость диффузии. Поскольку основное перемещение фосфора к корням растений осуществляется при диффузии ионов, то в сухой почве, когда расстояние перемещения иона превышает 5-10мм, поглощение фосфора растением замедляется (Томпсон, Троу,1982).

Лучше всего растениями усваивают воднорастворимые фосфаты. Но воднорастворимых солей фосфорной кислоты в почвах обычно так мало, что по их количеству нельзя судить о степени обеспеченности растений фосфором. В связи с этим определение количества фосфатов, переходящих в водную вытяжку из почвы, не дает правильного ответа на то, сколько фосфора находится в почве в форме, доступной для растений. Для оценки уровня обеспеченности растений фосфором используются показатели экстракции фосфатов из почвы различными растворителями: кислотными, щелочными разной концентрации, а также растворами солей, которые извлекают из почвы воднорастворимые фосфаты и часть соединений фосфора не растворяющихся в воде. Агрохимической службой используются: на нейтральных почвах (черноземного типа) 0,5н уксуснокислую вытяжку по Чирикову, на почвах элювиального ряда (серые лесные, дерново-подзолистые) – 0,2 н солянокислую вытяжку по Кирсанову, на карбонатных почвах (черноземах южных, обыкновенных, каштановых почвах) в 1% растворе углекислого аммония по Мачигину.

Читайте также:  Освещение для выращивания перца

При расчете доз фосфорных удобрений необходимо учитывать обеспеченность почвы доступными для растений формами фосфатов. Полученные результаты оценивают, пользуясь местными градациями к методам определения подвижных фосфатов в почве по Кирсанову, Чирикову, Мачигину (таблица 7).

Таблица 1 — Содержание подвижного фосфора в почвах разных почвенно-климатических зон

Класс обеспеченности Почвенно-климатические зоны P2O5, мг/100 г почвы
По Кирсанову По Чирикову По Мачигину
1 Канская, Красноярская, Минусинская лесостепи с прилегающей южной тайгой и степью 45 >40 >10
1 Ачинско-Боготольская, Чулымо-Енисейская лесостепи и прилегающая южная тайга 35 >30 >10

Примечание: 7-й и 8-й классы только для овощных культур и корнеплодов

При высокой доступности почвенного фосфора молодые растения быстро поглощают фосфор. При синтезе четверти органической массы они успевают поглотить до 50% всего нужного им количества фосфора за сезон. Зерновые культуры на 7-10 дней ускоряют наступление технологической спелости. Высокая обеспеченность фосфором начальной фазы роста яровой пшеницы обусловливает существенный прирост урожайности за счет повышения озерненности колоса.

Фосфор противодействует влиянию азота на усиление поражения ячменя мучнистой росой. Поражение грибными гнилями корней значительно выше у растений недостаточно обеспеченных фосфором. Эта тенденция проявляется интенсивнее у растений в стадии проростков. Вместе с тем есть сведения и обратного порядка: восприимчивость к болезни проявляется больше при достаточном обеспечении фосфором, чем тогда, когда в почве складывается дефицит фосфора.

3. Определение подвижных фосфатов по методу Чирикова

Материалы и оборудование: весы технические, колбы на 250 и 50 мл, воронки, бумажные фильтры, почвенные образцы, реактивы для выделения подвижных фосфатов:0,5 н уксусная вытяжка, 0,2 н солянокислая вытяжка, фотоэлетроколориметр.

Принцип и химизм метода

Почвенные фосфаты, взаимодействуя с молибденовокислым аммонием в сильнокислой среде (в присутствии аскорбиновой кислоты и ли хлористого олова), образуют комплексную соль голубой окраски. Интенсивность окраски ее пропорциональна содержанию подвижных фосфатов.

Ход анализа

Построение графика и расчеты. Для построения калибровочного графика в мерные колбы на 100мл берут возрастающие количества (5,10,15,20,25,30мл) стандартного раствора KHPO4. Доливают до метки реактивом &#171С&#187 по Чирикову, встряхивают и через 10минут определяют оптическую плотность на фотоэлектроколориметре. По полученным результатам строят график, по которому, согласно оптической плотности раствора, находят объем стандартного раствора и рассчитывают содержание подвижных фосфатов по формуле:

а – отсчет по графику, мл;

b – титр стандартного раствора;

V1 — объем уксусной кислоты, взятый для приготовления вытяжки, мл;

Читайте также:  Почвы по плодородности список

100 – коэффициент пересчета на 100 г почвы;

V2 — объем вытяжки, взятый для определения оптической плотности, мл;

С – навеска почвы, г.

4. Определение подвижных фосфатов по методу Кирсанова

Принцип и химизм метода определения подвижных фосфатов по методу Кирсанова основан на извлечении соединений фосфора из почвы раствором соляной кислоты молярной концентрации, равной 0,2 моль/дм 3 , при отношении почвы к раствору 1:5 с последующим определением фосфора в виде синего фосфорно-молибденового комплекса на фотоэлектроколориметре.

Ход анализа.

Навеску почвы 5г переносят в коническую колбу емкостью 100мл, заливают 25мл 0,2н соляной кислотой, взбалтывают 1минуту и отстаивают 15 минут, после чего вытяжку фильтруют. 1-2 мл прозрачного фильтрата переносят в мерную колбу на 50 мл и доливают до метки реактивом &#171С&#187 по Кирсанову. Содержимое колбы взбалтывают и через 10 минут определяют оптическую плотность окрашенного раствора на фотоэлектроколориметре.

Построение графика и расчеты. Для построения калибровочного графика в мерные колбы на 100мл берут возрастающие количества (5,10,15,20,25,30мл) стандартного раствора KHPO4. Доливают до метки реактивом &#171С&#187 по Кирсанову, встряхивают и через 10 минут определяют оптическую плотность на фотоэлектроколориметре. По полученным результатам строят график, по которому, согласно оптической плотности раствора, находят объем стандартного раствора и рассчитывают содержание подвижных фосфатов по формуле:

а – отсчет по графику, мл;

b – титр стандартного раствора;

V1 — объем уксусной кислоты, взятый для приготовления вытяжки, мл;

100 – коэффициент пересчета на 100 г почвы;

V2 — объем вытяжки, взятый для определения оптической плотности, мл;

С – навеска почвы, г.

Обсуждение результатов. При выполнении лабораторной работы каждый студент получает индивидуальный почвенный образец. На основании полученных результатов:

  1. рассчитайте содержание почвенных фосфатов в почве;
  2. оцените обеспеченность почвы фосфором по местным градациям;
  3. оформите в рабочей тетради выводы и обоснуйте полученные результаты

НазадНаверхДалее

© ФГОУ ВПО Красноярский государственный аграрный университет

Источник

Определение подвижного фосфора почве

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Определение подвижных соединений фосфора
и калия по методу Мачигина в модификации ЦИНАО

Soils. Determination of mobile compounds of phosphorus and
potassium by Machigin method modified by CINAO

Дата введения 1993-07-01

1. РАЗРАБОТАН И ВНЕСЕН Всесоюзным производственно-научным объединением «Союзсельхозхимия»

Л.М.Державин, С.Г.Самохвалов (руководитель разработки), Н.В.Соколова, А.Н.Орлова, К.А.Хабарарова, Ю.В.Соколова, А.А.Мавлянов, Г.К.Кондратьева

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 29.12.91 N 2389

3. Срок проверки — 1996 г.

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер раздела, пункта

Вводная часть, 5

Настоящий стандарт устанавливает метод определения подвижных соединений фосфора и калия в сероземах, серо-бурых, бурых, каштановых, черноземах и других почвах, вскрышных и вмещающих породах пустынной, полупустынной, сухостепной и степной зон, в карбонатных почвах других зон.

Стандарт не распространяется на почвенные горизонты, содержащие гипс.

Метод основан на извлечении подвижных соединений фосфора и калия из почвы раствором углекислого аммония концентрации 10 г/дм при отношении почвы к раствору 1:20 и последующем определении фосфора в виде синего фосфорно-молибденового комплекса на фотоэлектроколориметре и калия — на пламенном фотометре.

Предельные значения относительной погрешности результатов анализа для двусторонней доверительной вероятности =0,95 составляют в процентах:

30 — при массовой доле Р О в почве до 15 млн ;

10 — при определении К О.

Общие требования к проведению анализов — по ГОСТ 29269.

1. ОТБОР ПРОБ

Отбор проб для анализов проводят по ГОСТ 28168, ГОСТ 17.4.4.02 или ГОСТ 17.4.3.01 — в зависимости от целей исследований.

2. АППАРАТУРА И РЕАКТИВЫ

Фотометр пламенный. Допускается использование газовой смеси состава пропан-бутан-воздух и сетевой газ-воздух.

рН-метр или иономер с погрешностью измерений не более 0,05 единицы рН.

Ротатор с оборотом на 360° и частотой вращения не менее 30-40 мин или взбалтыватель с возвратно-поступательным движением и частотой колебаний не менее 75 мин .

Термостат с автоматической регулировкой температуры в пределах (25±2) °С или кондиционер.

Устройство нагревательное Н-1 (для колб) или другие нагревательные устройства.

Цилиндр или дозатор для отмеривания 100 см экстрагирующего раствора.

Колбы конические или технологические емкости вместимостью не менее 150 см .

Колбы конические вместимостью не менее 100 см из термостойкого стекла.

Пипетка или дозатор для отмеривания 15 см проб растворов сравнения и вытяжек.

Бюретка вместимостью 10 см .

Бюретка или дозатор для отмеривания 2 см смеси серной кислоты и марганцовокислого калия.

Цилиндр вместимостью 50 см или дозатор для отмеривания 35 и 36 см реактива Б.

Колбы мерные вместимостью 250 см и 1 дм .

Аммиак водный по ГОСТ 3760, раствор с массовой долей 25% (молярной концентрации (NH OH)=13,4 моль/дм ).

Аммоний углекислый по ГОСТ 3770 или аммоний углекислый кислый по ГОСТ 3762.

Аммоний молибденовокислый по ГОСТ 3765.

Калий марганцовокислый по ГОСТ 20490, раствор концентрации 17,5 г/дм .

Калий сурьмяновиннокислый, ч.

Калий фосфорнокислый однозамещенный по ГОСТ 4198.

Калий хлористый по ГОСТ 4234.

Индикатор метиловый оранжевый по ТУ 6-09-5171-84, раствор концентрации 10 г/дм .

Кислота серная по ГОСТ 4204, раствор с массовой долей 30% и растворы концентрации (1/2H SO )=5 и 6 моль/дм .

Кислота соляная по ГОСТ 3118, титрованный раствор концентрации (НСI)=0,1 моль/дм , приготовленный по ГОСТ 25794.1.

Бумага фильтровальная по ГОСТ 12026.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Приготовление экстрагирующего раствора — раствора углекислого аммония концентрации 10 г/дм с рН=9,0

Для приготовления 1 дм раствора взвешивают (10,0±0,1) г углекислого аммония, растворяют его в воде и доводят объем до 1 дм .

Если раствор готовят из кислого углекислого аммония и аммиака, предварительно уточняют концентрацию водного раствора аммиака. Для этого 1 см водного аммиака разбавляют водой в мерной колбе до 100 см . Отбирают 20 см приготовленного раствора в коническую колбу, прибавляют 2 капли метилового оранжевого и титруют раствором соляной кислоты концентрации (НСI)=0,1 моль/дм до перехода желтой окраски в оранжевую. Молярную концентрацию раствора аммиака ( ), моль/дм , вычисляют по уравнению

,

где — концентрация раствора соляной кислоты, моль/дм ;

— объем раствора соляной кислоты, израсходованный на титрование, см ;

— объем раствора аммиака, отобранный для титрования, см ;

100 — коэффициент разведения водного раствора аммиака перед титрованием.

Источник

Все про удобрения © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector