Организмы, обитающие в почве: животный мир, бактерии, грибы и водоросли
Почвенный организм – любой организм, обитающий в почве на протяжении всего или определенного этапа жизненного цикла. Размеры организмов, живущих в почвы варьируются от микроскопических бактерий, перерабатывающих разлагающиеся органические материалы до мелких млекопитающих.
Все организмы в почве играют важную роль в поддержании ее плодородия, структуры, дренажа и аэрации. Они также разрушают ткани растений и животных, высвобождая накопленные питательные вещества и превращая их в формы, используемые растениями.
Есть почвенные организмы вредители, например, нематоды, симфилиды, личинки жуков, личинки мух, гусеницы, корневые тли, слизни и улитки, которые наносят серьезный ущерб сельскохозяйственным культурам. Одни вызывают гниль, другие высвобождают вещества, препятствующие росту растений, а некоторые являются хозяевами организмов, вызывающих болезни животных.
Поскольку большинство функций организмов полезны для почвы, их численность влияет на уровень плодородия. Один квадратный метр богатой почвы может содержать до 1 000 000 000 различных организмов.
Группы организмов почвы
Почвенные организмы обычно делятся на пять произвольных групп в зависимости от размера, самыми маленькими из которых являются бактерии и водоросли. Далее следует микрофауна – организмы менее 100 микрон, питающиеся другими микроорганизмами. Микрофауна включает одноклеточных простейших, некоторые виды плоских червей, нематод, коловраток и тихоходок. Мезофауна несколько крупнее и гетерогенна, в том числе существа, питающиеся микроорганизмами, разлагающимся веществом и живыми растениями. К этой категории относятся нематоды, клещи, ногохвостки, протуры и пауроподы.
Четвертая группа, макрофауна, также весьма разнообразна. Наиболее распространенным примером является молочный белый червь, который питается грибами, бактериями и разлагающимся растительным материалом. В эту группу также входят слизняки, улитки и многоножки, питающиеся растениями, жуками и их личинками, а также личинками мух.
К мегафауне относятся крупные почвенные организмы, такие как земляные черви, возможно, самые полезные существа, которые живут в верхнем слое почвы. Дождевые черви обеспечивают процессы аэрации почвы, разрушая подстилку на ее поверхности и перемещая органическое вещество вертикально от поверхности до подпочвы. Это положительно влияет на плодородие, а также развивает матричную структуру почвы для растений и других организмов. Было подсчитано, что дождевые черви полностью перерабатывают эквивалент всей почвы планеты на глубину 2,5 см каждые 10 лет. Некоторые позвоночные животные также включены в группу почвенной мегафауны; к ним относятся всевозможные роющие животные, такие как змеи, ящерицы, суслики, барсуки, кролики, зайцы, мыши и кроты.
Роль организмов почвы
Одна из наиболее важных ролей организмов почвы заключается в переработки сложных веществ разлагающейся флоры и фауны, чтобы они могли снова использоваться живыми растениями. Они выступают в качестве катализаторов в ряде природных циклов, среди которых наиболее заметными являются углеродные, азотные и серные циклы.
Углеродный цикл начинается с растений, которые используют углекислый газ из атмосферы с водой для получения растительных тканей, таких как листья, стебли и плоды. Далее животные питаются растениям. Цикл завершается после смерти животных и растений, когда их разлагающиеся останки съедаются почвенными организмами, тем самым высвобождая углекислый газ обратно в атмосферу.
Белки служат основным материалом органических тканей, а азот основной элемент всех белков. Наличие азота в формах, которые могут использовать растения, является основным детерминантом плодородия почв. Роль организмов почвы в азотном цикле имеет большое значение. Когда умирает растение или животное, они расщепляют сложные протеины, полипептиды и нуклеиновые кислоты в их организме и производят аммоний, ионы, нитраты и нитриты, которые растения затем используют для создания своих тканей.
Как бактерии, так и сине-зеленые водоросли могут фиксировать азот непосредственно из атмосферы, но это менее продуктивно для развития растений, чем симбиотическая связь между бактериями Ризобий и бобовыми растениями, а также некоторыми деревьями и кустарниками. В обмен на выделения от хозяина, стимулирующие их рост и размножение, микроорганизмы фиксирует азот в клубеньках корней растения-хозяина.
Почвенные организмы также участвуют в серном цикле, главным образом, путем разложения естественно обильных соединений серы в почве, чтобы этот жизненно важный элемент был доступен растениям. Запах тухлых яиц, столь распространенный в заболоченной местности, обусловлен сероводородом, производимый микроорганизмами.
Хотя организмы почвы стали менее важны в сельском хозяйстве из-за развития синтетических удобрений, они играют жизненно необходимую роль в процессе образовании гумуса для лесных массивов.
Опавшие листья деревьев не пригодны в пищу для большинства животных. После того как растворимые в воде компоненты листьев вымываются, грибы и другая микрофлора перерабатывают твердую структуру, делая мягкой и податливой для разнообразных беспозвоночных животных, которые разбивают подстилку на мульчу. Древесные вши, личинки мух, ногохвостки и дождевые черви оставляют относительно неизменный органически помет, но они создают подходящий субстрат для первичных разлагающих, которые перерабатывают его на более простые химические соединения.
Поэтому органическое вещество листьев постоянно переваривается и перерабатывается группами все более мелких организмов. В конечном итоге оставшееся гуминовое вещество может составлять всего одну четверть первоначального органического вещества подстилки. Постепенно этот гумус смешивается с почвой с помощью роющих животных (например, кроты) и под воздействием дождевых червей.
Хотя некоторые почвенные организмы могут стать вредителями, особенно когда одна и та же культура постоянно выращивается на одном поле, поощряя распространение организмов, которые питаются ее корнями. Тем не менее, они являются важным элементом процессов жизни, смерти и распада, омолаживающих окружающую среду планеты.
Источник
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Популярные статьи
Почвенная биота
Почвенная биота — живые организмы, обитающие в почве и отличающиеся экологическими функциями и таксономическим положением.
В состав почвенной биоты входят:
- микроорганизмы — бактерии, водоросли, грибы, актиномицеты;
- простейшие — инфузории, жгутиковые, корненожки;
- черви;
- членистоногие насекомые;
- моллюски и др.
В хорошо окультуренных почвах количество почвенной биоты может достигать нескольких миллиардов на 1 г почвы, или 10 т/га.
Навигация
Значение почвенной биоты
Почвенная биота участвует в:
- формировании плодородия почвы;
- минерализации и гумификации органического вещества;
- переходе связанных форм питательных элементов в подвижные;
- азотфиксации;
- перемещении органических и минеральных веществ по профилю почвы;
- образовании оптимальной структуры почвы;
- процессах образования и трансформации фитоактивных веществ;
- поддержании оптимального питательного режима почв.
В обрабатываемой почве почвенная биота за счет частичного связывания минеральных элементов и удобрений, позволяет удерживать питательные веществе в пахотном слое, благоприятствуя созданию оптимального питательного режима и оструктуриванию почвы.
Почвенная микрофлора
Первые живые микроорганизмы, возникшие на Земле в древности, положили начало почвообразовательному процессу. Первые микробы получали энергию от разложения химических соединений и выделяли в процессе своей жизнедеятельности сильные кислоты, которые разрушали и измельчали материнскую породу, создавая новый вид структуры. С течением времени выветренная порода обогащалась органическим веществом.
В пахотном слое почвы масса бактерий составляет от 3 до 7-8 т/га.
Ризосферные микроорганизмы перерабатывают выделяемые растениями в процессе жизнедеятельности токсичные вещества. Полезные микроорганизмы переводят труднорастворимые соединения в доступные для питания растений. Большую роль в питании растений играют азотфиксаторы, как обитающие на корнях бобовых, так и свободноживущие.
По способу питания микроорганизмы подразделяются на автотрофные и гетеротрофные. Автотрофные бактерии используют для поглощения углерода фотосинтез или химическую энергию окисления минеральных веществ — хемосинтез. Способность к фотосинтезу имеют зеленые и пурпурные серобактерии, нитрифицирующие бактерии, железобактерии. Гетеротрофные бактерии поглощают углерод уже готовых органических соединений. Большинство почвенных бактерий, актиномицетов, почти все грибы и простейшие являются гетеротрофами.
Процесс окисления сероводорода, элементарной серы и серосодержащих соединений до серной кислоты называется сульфофикацией. Его осуществляют серобактерии и тионовые бактерии. Серная кислота способствует переходу труднорастворимых минеральных солей в растворимые, либо после нейтрализации в виде сульфатов используется в серном питании растений.
Железобактерии участвуют в превращении солей железа и марганца.
Органический азот, как правило, не доступен растениям. В почве происходит минерализация органического азота (аммонификация). В этом процессе участвуют гетеротрофные бактерии, актиномицеты и грибы.
Аммиак, высвобождающийся в результате биохимических реакций аммонификации частично адсорбируется на глинисто-гумусовых частицах или нейтрализуется кислотностью почвы, частично — используется почвенной биотой. Часть аммиака может окисляться автотрофами до нитритов, нитратов и молекулярного азота.
Автотрофы используют минеральные азотистые соединения, такие как соли аммония и нитраты. Существуют специфические микроорганизмы, способные использовать питательные вещества из гумуса.
Оптимальной влажностью почвы для развития микроорганизмов является влажность 50-60% максимальной влагоемкости. Анаэробные микроорганизмы развиваются при влажности от 80 до 100%.
В почве сосуществуют одновременно аэробные и анаэробные микроорганизмы. Такое сосуществование возможно, когда на поверхности почвенной частицы существуют аэробные бактерии, интенсивно поглощающие кислород. При этом в центре частицы складывается дефицит кислорода и условия становятся анаэробными.
Различные виды микроорганизмов способны разрушать клетчатку и пектиновые вещества, благодаря чему происходит разложение растительных остатков. Под влиянием уробактерий мочевина трансформируется в карбонат аммония. Уробактерии — аэробные микроорганизмы, развивающиеся при рН 7-8, мочевина служит для них источником азота, а органические кислоты и углеводы — углерода. Разнообразные почвенные микроорганизмы расщепляют также гемицеллюлозу, крахмал, лигнин.
В непосредственной близости от корней высших растений образуется зона, благоприятная для развития почвенных микроорганизмов — ризосфера. Корневые выделения, содержащие различные органические вещества, и отмершие ткани растений становятся питательной средой для ризосферных микроорганизмов.
Согласно данным В.Т. Емцева, количество бактерий рода Clostridium в 1 г почвы пара составляет 69,7 тыс., тогда как в ризосфере — 10,7 млн. По расчетам, масса бактерий в ризосфере люцерны вдвое больше, чем вне ризосферы, и составляет соответственно 5 и 2,25 т/га. Микрофлора ризосферы бобовых культур богаче, чем у злаковых.
Преобладающая группа микрофлоры, обитающей в ризосфере — неспоровые бактерии: азотобактер, клубеньковые, фотосинтезирующие бактерии, маслянокислые, микобактерии, водоросли. В ризосфере отмечается и более интенсивное развитие водорослей. В ризосфере также развиваются аммонификаторы, денитрификаторы, нитрификаторы.
При определенных условиях ризосферная микрофлора может выполнять положительную и отрицательную роль. Микроорганизмы, как и растения используют для питания минеральные вещества. Однако размер этой конкуренции обычно не значительный. Ризосферные микроорганизмы выступают в роли биологических «закрепителей» питательных веществ от вымывания и выноса из корнеобитаемого слоя почвы.
Источник
Почва
По́чва — поверхностный слой литосферы Земли, обладающий плодородием и представляющий собой полифункциональную гетерогенную открытую четырёхфазную (твёрдая, жидкая, газообразная фазы и живые организмы) структурную систему, образовавшуюся в результате выветривания горных пород и жизнедеятельности организмов. [1] Её рассматривают как особую природную мембрану (биогеомембрану), регулирующую взаимодействие между биосферой, гидросферой и атмосферой Земли. Почвы являются функцией от климата, рельефа, исходной почвообразующей породы, микроорганизмов, растений и животных (то есть биоты в целом), человеческой деятельности и изменяются со временем.
Почва (определение по ГОСТ 27593-88) — самостоятельное естественноисторическое органоминеральное природное тело, возникшее на поверхности Земли в результате длительного воздействия биотических, абиотических и антропогенных факторов, состоящее из твёрдых минеральных и органических частиц, воды и воздуха и имеющее специфические генетико-морфологические признаки, свойства, создающие для роста и развития растений соответствующие условия. [2]
Почвоведение — наука, занимающаяся изучением почвы.
Содержание
Морфология
Термины по ГОСТ 27593-88:
Почвенный профиль [2] — совокупность генетически сопряжённых и закономерно сменяющихся почвенных горизонтов, на которые расчленяется почва в процессе почвообразования.
Почвенный горизонт [2] — специфический слой почвенного профиля, образовавшийся в результате воздействия почвообразовательных процессов.
Почвенный покров [2] — совокупность почв, покрывающих земную поверхность.
В процессе почвообразования, прежде всего под действием вертикальных (восходящих и нисходящих) потоков вещества и энергии, а также неоднородности распределения живого вещества исходная порода расслаивается на генетические горизонты. Часто почвы формируются на исходно вертикально неоднородных двучленных породах, что откладывает отпечаток на почвообразование и сочетание горизонтов.
Горизонты рассматриваются как однородные (в масштабе всей почвенной толщи) части почвы, взаимосвязанные и взаимообусловленные, отличающиеся по химическому, минералогическому, гранулометрическому составу, физическим и биологическим свойствам. Комплекс горизонтов, характерный для данного типа почвообразования, образует почвенный профиль.
Выделяются следующие типы горизонтов [4] :
- Органогенные — (подстилка (A0, O), торфяной горизонт (T), перегнойный горизонт (Ah, H), дернина (Ad), гумусовый горизонт (A) и т. д.) — характеризующиеся биогенным накоплением органического вещества.
- Элювиальные — (подзолистый, лессированный, осолоделый, сегрегированный горизонты; обозначаются буквой E с индексами, либо A2) — характеризующиеся выносом органических и/или минеральных компонентов.
- Иллювиальные — (B с индексами) — характеризующиеся накоплением вынесенного из элювиальных горизонтов вещества.
- Метаморфические — (Bm) — образуются при трансформации минеральной части почвы на месте.
- Гидрогенно-аккумулятивные — (S) — образуются в зоне максимального накопления веществ (легкорастворимые соли, гипс, карбонаты, оксиды железа и т. д.), приносимых грунтовыми водами.
- Коровые — (K) — горизонты, сцементированные различными веществами (легкорастворимые соли, гипс, карбонаты, аморфный кремнезём, оксиды железа и др.).
- Глеевые — (G) — с преобладающими восстановительными условиями.
- Подпочвенные — материнская порода (C), из которой образовалась почва, и залегающая ниже подстилающая порода (D) иного состава.
Твёрдая фаза почв
Почва высокодисперсна и обладает большой суммарной поверхностью твёрдых частиц: от 3—5 м²/г у песчаных до 300—400 м²/г у глинистых. Благодаря дисперсности почва обладает значительной пористостью: объём пор может достигать от 30 % общего объёма в заболоченных минеральных почвах до 90 % в органогенных торфяных. В среднем же этот показатель составляет 40—60 %.
Плотность твёрдой фазы (ρs) минеральных почв колеблется от 2,4 до 2,8 г/см³, органогенных: 1,35—1,45 г/см³. Плотность почвы (ρb) ниже: 0,8—1,8 г/см³ и 0,1—0,3 г/см³ соответственно. Пористость (порозность, ε) связана с плотностями по формуле:
Минеральная часть почвы
Минеральный состав
Около 50—60 % объёма и до 90—97 % массы почвы составляют минеральные компоненты. Минеральный состав почвы отличается от состава породы, на которой она образовалась: чем старше почва, тем сильнее это отличие.
Минералы, являющиеся остаточным материалом в ходе выветривания и почвообразования, носят название первичных. В зоне гипергенеза большинство из них неустойчиво и с той или иной скоростью разрушается. Одними из первых разрушаются оливин, амфиболы, пироксены, нефелин. Более устойчивыми являются полевые шпаты, составляющие до 10—15 % массы твёрдой фазы почвы. Чаще всего они представлены относительно крупными песчаными частицами. Высокой стойкостью отличаются эпидот, дистен, гранат, ставролит, циркон, турмалин. Содержание их обычно незначительно, однако позволяет судить о происхождении материнской породы и времени почвообразования. Наибольшую устойчивость имеет кварц, который выветривается за несколько миллионов лет. Благодаря этому в условиях длительного и интенсивного выветривания, сопровождающегося выносом продуктов разрушения минералов, происходит его относительное накопление.
Почва характеризуется высоким содержанием вторичных минералов, образованных в результате глубокого химического преобразования первичных, или же синтезированных непосредственно в почве. Особенно важна среди них роль глинистых минералов — каолинита, монтмориллонита, галлуазита, серпентина и ряда других. Они обладают высокими сорбционными свойствами, большой ёмкостью катионного и анионного обмена, способностью к набуханию и удержанию воды, липкостью и т. д. Этими свойствами во многом обусловлена поглотительная способность почв, её структура и, в конечном счёте, плодородие.
Высоко содержание минералов-оксидов и гидроксидов железа (лимонит, гематит), марганца (вернадит, пиролюзит, манганит), алюминия (гиббсит) и др., также сильно влияющие на свойства почвы — они участвуют в формировании структуры, почвенного поглощающего комплекса (особенно в сильно выветрелых тропических почвах), принимают участие в окислительно-восстановительных процессах. Большую роль в почвах играют карбонаты (кальцит, арагонит см. карбонатно-кальциевое равновесие в почвах). В аридных регионах в почве нередко накапливаются легкорастворимые соли (хлорид натрия, карбонат натрия и др.), влияющие на весь ход почвообразовательного процесса.
Гранулометрический состав
В почвах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые (глинистые) почвы могут иметь проблемы с воздухосодержанием, лёгкие (песчаные) — с водным режимом.
Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует. В российском почвоведении принята шкала Н. А. Качинского. Характеристика гранулометрического (механического) состава почвы даётся на основании содержания фракции физической глины (частиц менее 0,01 мм) и физического песка (более 0,01 мм) с учётом типа почвообразования.
В мире также широко применяется определение механического состава почвы по треугольнику Ферре: по одной стороне откладывается доля пылеватых (silt, 0,002—0,05 мм) частиц, по второй — глинистых (clay, Органическая часть почвы
В почве содержится некоторое количество органического вещества. В органогенных (торфяных) почвах оно может преобладать, в большинстве же минеральных почв его количество не превышает нескольких процентов в верхних горизонтах.
В состав органического вещества почвы входят как растительные и животные остатки, не утратившие черт анатомического строения, так и отдельные химические соединения, называемые гумусом. В составе последнего находятся как неспецифические вещества известного строения (липиды, углеводы, лигнин, флавоноиды, пигменты, воск, смолы и т. д.), составляющие до 10—15 % всего гумуса, так и образующиеся из них в почве специфические гумусовые кислоты.
Гумусовые кислоты не имеют определённой формулы и представляют собой целый класс высокомолекулярных соединений. В советском и российском почвоведении они традиционно разделяются на гуминовые и фульвокислоты.
Элементный состав гуминовых кислот (по массе): 46—62 % C, 3—6 % N, 3—5 % H, 32—38 % O. Состав фульвокислот: 36—44 % C, 3—4,5 % N, 3—5 % H, 45—50 % O. В обоих соединениях присутствуют также сера (от 0,1 до 1,2 %), фосфор (сотые и десятые доли %). Молекулярные массы для гуминовых кислот составляют 20—80 кДа (минимальная 5 кДа, максимальная 650 кДа), для фульвокислот 4—15 кДа. Фульвокислоты подвижнее, растворимы на всём диапазоне pH (гуминовые выпадают в осадок в кислой среде). Отношение углерода гуминовых и фульвокислот (Cгк/Cфк) является важным показателем гумусового состояния почв.
В молекуле гуминовых кислот выделяют ядро, состоящее из ароматических колец, в том числе азотсодержащих гетероциклов. Кольца соединяются «мостиками» с двойными связями, создающими протяжённые цепи сопряжения, обуславливающие тёмную окраску вещества [5] . Ядро окружено периферическими алифатическими цепями, в том числе углеводородного и полипептидного типов. Цепи несут различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.), что является причиной высокой ёмкости поглощения — 180—500 мг-экв/100 г.
О строении фульвокислот известно значительно меньше. Они имеют тот же состав функциональных групп, однако более высокую ёмкость поглощения — до 670 мг-экв/100 г.
Механизм формирования гумусовых кислот (гумификация) до конца не изучен. По конденсационной гипотезе [6] (М. М. Кононова, А. Г. Трусов) эти вещества синтезируются из низкомолекулярных органических соединений. По гипотезе Л. Н. Александровой [7] гумусовые кислоты образуются при взаимодействии высокомолекулярных соединений (белки, биополимеры), затем постепенно окисляются и расщепляются. Согласно обеим гипотезам в этих процессах принимают участие ферменты, образуемые преимущественно микроорганизмами. Есть предположение о чисто биогенном происхождении гумусовых кислот. По многим свойствам они напоминают тёмноокрашенные пигменты грибов.
Почвенная структура
Структура почвы [2] — физическое строение твёрдой части и порового пространства почвы, обусловленное размером, формой, количественным соотношением, характером взаимосвязи и расположением как механических элементов, так и состоящих из них агрегатов.
Твёрдая часть почвы [2] — совокупность всех видов частиц, находящихся в почве в твёрдом состоянии при естественном уровне влажности.
Поровое пространство в почве [2] — разнообразные по размерам и форме промежутки между механическими элементами и агрегатами почвы, занятые воздухом или водой.
Минеральные частицы почвы всегда объединяются в агрегаты различной прочности, размеров и формы. Вся совокупность агрегатов, характерных для почвы, называется её структурой. Факторами образования агрегатов являются: набухание, сжатие и растрескивание почвы в ходе циклов увлажнения-иссушения и замерзания-оттаивания, коагуляция почвенных коллоидов (наиболее важна в этом роль органических коллоидов), цементация частиц малорастворимыми соединениями, образование водородных связей, связей между нескомпенсированными зарядами кристаллической решётки минералов, адсорбция, механическое сцепление частиц гифами грибов, актиномицетов и корнями растений, агрегация частиц при прохождении через кишечник почвенных животных.
Структура почвы оказывает влияние на проникновение воздуха к корням растений, удержание влаги, развитие микробного сообщества. В зависимости только от размера агрегатов урожай может меняться на порядок. Оптимальна для развития растений структура, в которой преобладают агрегаты размером от 0,25 до 7—10 мм (агрономически ценная структура). Важным свойством структуры является её прочность, особенно водоустойчивость.
Преобладающая форма агрегатов является важным диагностическим признаком почвы. Выделяют [8] округло-кубовидную (зернистую, комковатую, глыбистую, пылеватую), призмовидную (столбовидную, призмовидную, призматическую) и плитовидную (плитчатую, чешуйчатую) структуру, а также ряд переходных форм и градаций по размеру. Первый тип характерен для верхних гумусовых горизонтов и обуславливает большую порозность, второй — для иллювиальных, метаморфических горизонтов, третий — для элювиальных.
Новообразования и включения
Новообразования — скопления веществ, образующиеся в почве в процессе её формирования.
Широко распространены новообразования железа и марганца, чья миграционная способность зависит от окислительно-восстановительного потенциала и контролируется организмами, в особенности бактериями. Они представлены конкрециями, трубками по ходам корней, корками и др. В некоторых случаях происходит цементация почвенной массы железистым материалом. В почвах, особенно аридных и семиаридных регионов, распространены известковые новообразования: налёты, выцветы, псевдомицелий, конкреции, корковые образования. Новообразования гипса, также характерные для аридных областей, представлены налётами, друзами, гипсовыми розами, корками. Встречаются новообразования легкорастворимых солей, кремнезёма (присыпка в элювиально-иллювиально дифференцированных почвах, опаловые и халцедоновые прослои и коры, трубки), глинистых минералов (кутаны — натёки и корочки, образующиеся в ходе иллювиального процесса), часто вместе с гумусом.
К включениям относят любые объекты, находящиеся в почве, но не связанные с процессами почвообразования (археологическое находки, кости, раковины моллюсков и простейших, обломки породы, мусор). Неоднозначно отнесение к включениям, либо новообразованиям копролитов, червоточин, кротовин и прочих биогенных образований.
Жидкая фаза почв
Состояния воды в почве
В почве различают воду связанную и свободную. Первую частицы почвы настолько прочно удерживают, что она не может передвигаться под влиянием силы тяжести,а свободная вода подчинена закону земного притяжения. Связанную воду в свою очередь делят на химически и физически связанную.
Химически связанная вода входит в состав некоторых минералов. Эта вода конституционная, кристаллизационная и гидратная. Химически связанную воду можно удалить лишь путем нагревания, а некоторые формы (конституционную воду) — прокаливанием минералов. В результате выделения химически связанной воды свойства тела настолько меняются, что можно говорить о переходе в новый минерал.
Физически связанную воду почва удерживает силами поверхностной энергии. Поскольку величина поверхностной энергии возрастает с увеличением общей суммарной поверхности частиц, то содержание физически связанной воды зависит от размера частиц, слагающих почву. Частицы крупнее 2 мм в диаметре не содержат физически связанную воду; этой способностью обладают лишь частицы, имеющие диаметр менее указанного. У частиц диаметром от 2 до 0,01 мм способность удерживать физически связанную воду выражена слабо. Она возрастает при переходе к частицам меньше 0,01 мм и наиболее выражена у цредколлоидных и особенно коллоидных частиц. Способность удерживать физически связанную воду зависит не только от размера частиц. Определенное влияние оказывает форма частиц и их химикоминералогический состав. Повышенной способностью удерживать физически связанную воду обладает перегной, торф. Последующие слои молекул воды частица удерживает со все меньшей силой. Это рыхло связанная вода. По мере отдаления частицы от поверхности притяжение ею молекул воды постепенно ослабевает. Вода переходит в свободное состояние.
Первые слои молекул воды, т.е. гигроскопическую воду, частицы почвы притягивают с громадной силой, измеряемой тысячами атмосфер. Находясь под столь большим давлением, молекулы прочно связанной воды сильно сближены, что меняет многие свойства воды. Она приобретает качества как бы твердого тела.. Рыхло связанную воду почва удерживает с меньшей силой, ее свойства не так резко отличны от свободной воды. Тем не менее сила притяжения еще настолько велика, что эта вода не подчиняется силе земного притяжения и по ряду физических свойств отличается от свободной воды.
Капиллярная скважность обусловливает впитывание и удержание в подвешенном состоянии влаги, приносимой атмосферными осадками. Проникновение влаги по капиллярным порам в глубь почвы осуществляется крайне медленно. Водопроницаемость почвы обусловлена в основном некапиллярной скважностью. Диаметр этих пор настолько велик, что влага не может в них удерживаться в подвешенном состоянии и беспрепятственно просачивается в глубь почвы.
При поступлении влаги на поверхность почвы сначала идет насыщение почвы водой до состояния полевой влагоемкости, а затем через насыщенные водой слои возникает фильтрация по некапиллярным скважинам. По трещинам, ходам землероек и другим крупным скважинам вода может проникать в глубь почвы, опережая насыщение водой до величины полевой влагоемкости.
Чем выше некапиллярная скважность, тем выше и водопроницаемость почвы.
В почвах кроме вертикальной фильтрации существует горизонтальное внутрипочвенное передвижение влаги. Поступающая в почву влага, встречая на своем пути слой с пониженной водопроницаемостью, передвигается внутри почвы над этим слоем в соответствии с направлением его уклона.
Взаимодействие с твёрдой фазой
Почвенный поглощающий комплекс
Почва может удерживать поступившие в неё вещества по разным механизмам (механическая фильтрация, адсорбция мелких частиц, образование нерастворимых соединений, биологическое поглощение), важнейшим из которых является ионный обмен между почвенным раствором и поверхностью твёрдой фазы почвы. Твёрдая фаза за счёт сколов кристаллической решётки минералов, изоморфных замещений, наличия карбоксильных и ряда других функциональных групп в составе органического вещества заряжена преимущественно отрицательно, поэтому наиболее ярко выражена катионообменная способность почвы. Тем не менее, положительные заряды, обуславливающее анионный обмен, в почве также присутствуют.
Вся совокупность компонентов почвы, обладающих ионообменной способностью, называется почвенным поглощающим комплексом (ППК). Входящие в состав ППК ионы носят название обменных или поглощённых. Характеристикой ППК является ёмкость катионного обмена (ЕКО) — общее количество обменных катионов одного рода, удерживаемых почвой в стандартном состоянии — а также сумма обменных катионов, характеризующая природное состояние почвы и не всегда совпадающая с ЕКО.
Отношения между обменными катионами ППК не совпадают с отношениями между теми же катионами в почвенном растворе, то есть ионный обмен протекает селективно. Предпочтительнее поглощаются катионы с более высоким зарядом, а при их равенстве — с большей атомной массой, хотя свойства компонентов ППК могут несколько нарушать эту закономерность. Например, монтмориллонит поглощает больше калия, чем протонов водорода, а каолинит — наоборот.
Обменные катионы являются одним из непосредственных источников минерального питания растений, состав ППК отражается на образовании органоминеральных соединений, структуре почвы и её кислотности.
Почвенная кислотность
Почвенный воздух.
Почвенный воздух состоит из смеси различных газов:
- кислород, который поступает в почву из атмосферного воздуха; содержание его может меняться в зависимости от свойств самой почвы (её рыхлости, например), от количества организмов, использующих кислород для дыхания и процессов метаболизма;
- углекислота, которая образуется в результате дыхания организмов почвы, то есть в результате окисления органических веществ;
- метан и его гомологи (пропан, бутан), которые образуются в результате разложения более длинных углеводородных цепей;
- водород;
- сероводород;
- азот; более вероятно образование азота в виде более сложных соединений (например, мочевины)
И это далеко не все газообразные вещества, которые составляют почвенный воздух. Его химический и количественный состав зависят от содержащихся в почве организмов, содержания в ней питательных веществ, условий выветривания почвы и др.
Живые организмы в почве
Почва — это среда обитания множества организмов. Существа, обитающие в почве, называются педобионтами. Наименьшими из них являются бактерии, водоросли, грибки и одноклеточные организмы, обитающие в почвенных водах. В одном м³ может обитать до 10¹⁴ организмов. В почвенном воздухе обитают беспозвоночные животные, такие как клещи, пауки, жуки, ногохвостки и дождевые черви. Они питаются остатками растений, грибницей и другими организмами. В почве обитают и позвоночные животные, одно из них — крот. Он очень хорошо приспособлен к обитанию в абсолютно тёмной почве, поэтому он глухой и практически слепой.
Неоднородность почвы приводит к тому, что для организмов разных размеров она выступает как разная среда.
- Для мелких почвенных животных, которых объединяют под названием нанофауна (простейшие, коловратки, тихоходки, нематоды и др.), почва — это система микроводоемов.
- Для дышащих воздухом несколько более крупных животных почва предстает как система мелких пещер. Таких животных объединяют под названием микрофауна. Размеры представителей микрофауны почв — от десятых долей до 2-3 мм. К этой группе относятся в основном членистоногие: многочисленные группы клещей, первичнобескрылые насекомые (коллемболы, протуры, двухвостки), мелкие виды крылатых насекомых, многоножки симфилы и др. У них нет специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь. Насыщенный водяными парами почвенный воздух позволяет дышать через покровы. Многие виды не имеют трахейной системы. Такие животные очень чувствительны к высыханию.
- Более крупных почвенных животных, с размерами тела от 2 до 20 мм, называют представителями мезофауны. Это личинки насекомых, многоножки, энхитреиды, дождевые черви и др. Для них почва — плотная среда, оказывающая значительное механическое сопротивление при движении. Эти относительно крупные формы передвигаются в почве либо расширяя естественные скважины путём раздвигания почвенных частиц, либо роя новые ходы.
- Мегафауна или макрофауна почв — это крупные землерои, в основном из числа млекопитающих. Ряд видов проводит в почве всю жизнь (слепыши, слепушонки, цокоры, кроты Евразии, златокроты Африки, сумчатые кроты Австралии и др.). Они прокладывают в почве целые системы ходов и нор. Внешний облик и анатомические особенности этих животных отражают их приспособленность к роющему подземному образу жизни.
- Кроме постоянных обитателей почвы, среди крупных животных можно выделить большую экологическую группу обитателей нор (суслики, сурки, тушканчики, кролики, барсуки и т. п.). Они кормятся на поверхности, но размножаются, зимуют, отдыхают, спасаются от опасности в почве. Целый ряд других животных использует их норы, находя в них благоприятный микроклимат и укрытие от врагов. Норники обладают чертами строения, характерными для наземных животных, но имеют ряд приспособлений, связанных с роющим образом жизни.
Пространственная организация
В природе практически не бывает таких ситуаций, чтобы на много километров простиралась какая-нибудь одна почва с неизменными в пространстве свойствами. При этом различия почв обусловлены различиями в факторах почвообразования.
Закономерное пространственное размещение почв на небольших территориях называется структурой почвенного покрова (СПП). Исходной единицей СПП является элементарный почвенный ареал (ЭПА) — почвенное образование, внутри которого отсутствуют какие-либо почвенно-географические границы. Чередующиеся в пространстве и в той или иной степени генетически связанные ЭПА образуют почвенные комбинации.
Почвообразование
- Элементы природной среды: почвообразующие породы, климат, живые и отмершие организмы, возраст и рельеф местности,
- а также антропогенная деятельность, оказывающие существенное влияние на почвообразование.
Первичное почвообразование
В русском почвоведении приведена концепция [9] , что любая субстратная система, обеспечивающая рост и развитие растений «от семени до семени», есть почва. Идея эта дискуссионная, поскольку отрицает докучаевский принцип историчности, подразумевающий определённую зрелость почв и разделение профиля на генетические горизонты, но полезна в познании общей концепции развития почв.
Зачаточное состояние профиля почв до появления первых признаков горизонтов можно определять термином «инициальные почвы» [10] . Соответственно выделяется «инициальная стадия почвообразования» — от почвы «по Вески» до того времени, когда появится заметная дифференциация профиля на горизонты, и можно будет прогнозировать классификационный статус почвы. За термином «молодые почвы» предложено закрепить стадию «молодого почвообразования» — от появления первых признаков горизонтов до того времени, когда генетический (точнее, морфолого-аналитический) облик будет достаточно выраженным для диагностики и классификации с общих позиций почвоведения.
Генетические характеристики можно давать и до достижения зрелости профиля, с понятной долей прогностического риска, например, — «инициальные дерновые почвы»; «молодые проподзолистые почвы», «молодые карбонатные почвы». При таком подходе номенклатурные трудности разрешаются естественно, на базе общих принципов почвенно-экологического прогнозирования в соответствии с формулой Докучаева-Йенни (представление почвы как функции факторов почвообразования: S = f(cl, o, r, p, t …)).
Антропогенное почвообразование
В научной литературе для земель после горных работ и других нарушений почвенного покрова закрепилось обобщённое название «техногенные ландшафты», а изучение почвообразования в этих ландшафтах оформилось в «рекультивационное почвоведение» [11] . Был предложен также термин «технозёмы» [12] , по сути представляющий попытку объединить Докучаевскую традицию «-зёмов» с техногенными ландшафтами.
Отмечается, что логичнее применять термин «технозём» к тем почвам, которые специально создаются в процессе технологии горных работ путём разравнивания поверхности и насыпания специально снятых гумусовых горизонтов или потенциально плодородных грунтов (лёсса). Использование этого термина для генетического почвоведения вряд ли оправданно, так как итоговым, климаксным продуктом почвообразования будет не новый «-зём», а зональная почва, например, дерново-подзолистая, или дерново-глеевая.
Для техногенно-нарушенных почв предлагалось использовать термины «инициальные почвы» (от «нуль — момента» до появления горизонтов) и «молодые почвы» (от появления до оформления диагностических признаков зрелых почв), указывающие на главную особенность таких почвенных образований — временные этапы их эволюции из недифференцированных пород в зональные почвы.
Классификация почв
Единой общепринятой классификации почв не существует. Наряду с международной (Классификация почв ФАО и сменившая её в 1998 году WRB) во многих странах мира действуют национальные системы классификации почв, часто основанные на принципиально разных подходах.
В России к 2004 году специальной комиссией Почвенного института им. В. В. Докучаева, руководимой Л. Л. Шишовым, подготовлена новая классификация почв, являющаяся развитием классификации 1997 года. Однако российским почвоведами продолжает активно использоваться и классификация почв СССР 1977 года[1].
Из отличительных особенностей новой классификации можно назвать отказ от привлечения для диагностики факторно-экологических и режимных параметров, трудно диагностируемых и часто определяемых исследователем чисто субъективно, фокусирование внимания на почвенном профиле и его морфологических особенностях. В этом ряд исследователей видят отход от генетического почвоведения, делающего основной упор на происхождении почв и процессах почвообразования. В классификации 2004 года вводятся формальные критерии отнесения почвы к определённому таксону, привлекается понятие диагностического горизонта, принятое в международной и американской классификациях. В отличие от WRB и американской Soil Taxonomy, в российской классификации горизонты и признаки не равноценны, а строго ранжированы по таксономической значимости. Бесспорно важным нововведением классификации 2004 года стало включение в неё антропогенно-преобразованных почв.
В американской школе почвоведов используется классификация Soil Taxonomy, имеющая распространение также в других странах. Характерной её особенностью является глубокая проработка формальных критериев отнесения почв к тому или иному таксону. Используются названия почв, сконструированные из латинских и греческих корней. В классификационную схему традиционно включаются почвенные серии — группы почв, отличных лишь по гранулометрическому составу, и имеющие индивидуальное название — описание которых началось ещё при картировании Почвенным бюро территории США в начале XX века.
Термины по ГОСТ 27593-88(2005) [13] :
Классификация почв — система разделения почв по происхождению и (или) свойствам.
- Тип почвы — основная классификационная единица, характеризуемая общностью свойств, обусловленных режимами и процессами почвообразования, и единой системой основных генетических горизонтов.
- Подтип почвы — классификационная единица в пределах типа, характеризуемая качественными отличиями в системе генетических горизонтов и по проявлению налагающихся процессов, характеризующих переход к другому типу.
- Род почвы — классификационная единица в пределах подтипа, определяемая особенностями состава почвенно-поглощающего комплекса, характером солевого профиля, основными формами новообразований.
- Вид почвы — классификационная единица в пределах рода, количественно отличающаяся по степени выраженности почвообразовательных процессов, определяющих тип, подтип и род почв.
- Разновидность почвы — классификационная единица, учитывающая разделение почв по гранулометрическому составу всего почвенного профиля.
- Разряд почвы — классификационная единица, группирующая почвы по характеру почвообразующих и подстилающих пород.
- Разновидность почвы — классификационная единица, учитывающая разделение почв по гранулометрическому составу всего почвенного профиля.
- Вид почвы — классификационная единица в пределах рода, количественно отличающаяся по степени выраженности почвообразовательных процессов, определяющих тип, подтип и род почв.
- Род почвы — классификационная единица в пределах подтипа, определяемая особенностями состава почвенно-поглощающего комплекса, характером солевого профиля, основными формами новообразований.
- Подтип почвы — классификационная единица в пределах типа, характеризуемая качественными отличиями в системе генетических горизонтов и по проявлению налагающихся процессов, характеризующих переход к другому типу.
Закономерности распространения
Климат как фактор географического распространения почв
Климат — один из важнейших факторов почвообразования и географического распространения почв — в значительной степени определяется космическими причинами (количеством энергии, получаемой земной поверхностью от Солнца). С климатом связано проявление самых общих законов географии почв. Он влияет на почвообразование как непосредственно, определяя энергетический уровень и гидротермический режим почв, так и косвенно, воздействуя на другие факторы почвообразования (растительность, жизнедеятельность организмов, почвообразующие породы и т. д.).
Непосредственное влияние климата на географию почв проявляется в разных типах гидротермических условий почвообразования. Тепловой и водный режимы почв оказывают влияние на характер и интенсивность всех физических, химических и биологических процессов, протекающих в почве. Ими регулируются процессы физического выветривания горных пород, интенсивность химических реакций, концентрация почвенного раствора, соотношение твёрдой и жидкой фазы, растворимость газов. Гидротермические условия влияют на интенсивность биохимической деятельности бактерий, скорость разложения органических остатков, жизнедеятельность организмов и другие факторы, поэтому в разных районах страны с неодинаковым тепловым режимом скорость выветривания и почвообразования, мощность почвенного профиля и продуктов выветривания существенно различны.
Климат определяет наиболее общие закономерности распространения почв — горизонтальную зональность и вертикальную поясность.
Климат является результатом взаимодействия климатообразующих процессов, протекающих в атмосфере и деятельном слое (океанах, криосфере, поверхности суши и биомассе) — так называемой климатической системе, все компоненты которой непрерывно взаимодействуют друг с другом, обмениваясь веществом и энергией. Климатообразующие процессы можно разделить на три комплекса: процессы теплооборота, влагооборота и атмосферной циркуляции.
Значение почв в природе
Почва как среда обитания живых организмов
Почва обладает плодородием — является наиболее благоприятным субстратом или средой обитания для подавляющего большинства живых существ — микроорганизмов, животных и растений. Показательно также, что по их биомассе почва (суша Земли) почти в 700 раз превосходит океан, хотя на долю суши приходится менее 1/3 земной поверхности.
Геохимические функции
Свойство различных почв по-разному аккумулировать разнообразные химические элементы и соединения, одни из которых необходимы для живых существ (биофильные элементы и микроэлементы, различные физиологически-активные вещества), а другие являются вредными или токсичными (тяжёлые металлы, галогены, токсины и пр.), проявляется на всех живущих на них растениях и животных, включая и человека. В агрономии, ветеринарии и медицине такая взаимосвязь известна в виде так называемых эндемических болезней, причины которых были раскрыты только после работ почвоведов.
Почва оказывает существенное влияние на состав и свойства поверхностных, подземных вод и всю гидросферу Земли. Фильтруясь через почвенные слои вода извлекает из них особый набор химических элементов, характерный для почв водосборных территорий. А поскольку основные хозяйственные показатели воды (её технологическая и гигиеническая ценность) определяются содержанием и соотношением этих элементов, то нарушение почвенного покрова проявляется также в изменении качества воды.
Регуляция состава атмосферы
Почва является главным регулятором состава атмосферы Земли. Обусловлено это деятельностью почвенных микроорганизмов, в огромных масштабах продуцирующих разнообразные газы — азот и его окисды, кислород, диоксид и оксид углерода, метан и другие углеводороды, сероводород, ряд прочих летучих соединений. Большинство из этих газов вызывают «парниковый эффект» и разрушают озоновый слой, вследствие чего изменение свойств почв может привести к изменению климата на Земле. Не случайно происходящий в настоящее время сдвиг в климатическом равновесии нашей планеты специалисты связывают в первую очередь с нарушениями почвенного покрова.
Экономическое значение
Почву часто называют главным богатством любого государства в мире, поскольку на ней и в ней производится около 90 % продуктов питания человечества. Деградация почв сопровождается неурожаями и голодом, приводит к бедности государств, а гибель почв может вызвать гибель всего человечества. Также земля применялась в древности в качестве строительного материала.
История изучения
Описанию свойств почв и их классификации человек уделял внимание со времени возникновения земледелия. Тем не менее, появление почвоведения как науки произошло лишь в конце XIX века и связано с именем В. В. Докучаева. В. И. Вернадский также внёс вклад в почвоведение. Он называл почву биокосным образованием, то есть состоящим из живого и неживого вещества.
Источник
➤ Adblockdetector