Меню

Органическое вещество почвы формы

Научная электронная библиотека

10. Органическая часть почвы

В процессе почвообразования возникает симбиоз растений и почвенных условий, в более узком смысле – растений и гумуса. Органическое вещество и процессы его трансформации играют основную роль в почвообразовании, фактически формируют плодородие.

В почву поступают органические остатки отмерших растений, продукты их микробиологической трансформации, останки животных. Отмершая почвенная фауна привносит 100–200 кг/га в год, в агроэкосистемах после зерновых – 2–3 т/га, после многолетних трав – 7–9 т. В тундре образуется 1–2 т/га сухого органического вещества, в тропиках – 30–35.

Категории органических веществ

1. Органические остатки – остатки, не потерявшие черты анатомического строения. На долю неразложившихся остатков приходится 5–19 % от общего содержания органических соединений в почве.

2. Неспецифические органические соединения. Это вещества не почвенного происхождения, имеющие фито- , зоо- и микробоценотическую природу и поступающие в процессе почвообразования в виде отмирающей биомассы и продуктов жизнедеятельности организмов. Они синтезируются живыми организмами и поступают в почву после их отмирания.

3. Гумус, специфические органические соединения – основная часть органических соединений, присущая только почвам. Содержание гумуса в почве колеблется от 1 до 10 %.

Гумус – смесь различных по составу и свойствам высокомолекулярных соединений, объединенных общностью происхождения, некоторыми свойствами и чертами строения, продукт длительной трансформации органических остатков, обеспечивает плодородие почв. Его впервые выделил из торфа и описал немецкий химик Ф. Ахард в 1786 г.

Гумус содержит основные запасы питательных элементов для растений и микроорганизмов, в его состав входят многие физиологически активные вещества: ферменты, антибиотики, гуминовые кислоты. Он служит источником углерода и энергии для почвенных микроорганизмов, способствует формированию оптимальных водного, воздушного, теплового режимов, обеспечивает устойчивость почв к поллютантам. Лечебные грязи представляют собой комплекс гумусовых соединений.

С. А. Вильде (цит. по О. С. Безугловой, 2009) писал: «Гумус… это душа почвы. Продукт и источник жизни. Посредник опавших листьев и соли земли. Часть круговорота природы. Река, которая впадает в себя же; река жизни, передающая энергию из почвы в растения, а затем в животных и обратно в почву».

«Humus» по латыни – «земля», почва. «Латинское название человека «homo» происходит от слова гумус, субстанции жизни на земле», – писал Даниель Хилель (1998). Не случайно Humus ассоциируется с Нomo Sapiens.

В статьях, включенных в «Энциклопедию» Ф. А. Брокгауза и И. А. Ефрона (1890–1907), говорится о гумусе или перегное. Авторы выделяют «безразличный гумус» (ульмин и гумин по Мульдеру) и кислоты, из которых одни растворимы в щелочах – перегнойные (ульминовая и гуминовая), а другие растворимы в воде – креоновая (ключевая) и апокреоновая (осадочно-ключевая). Отдельно описан «индиферентный гумус» – нерастворимый в щелочах.

Ссылаясь на Труды Почвенной комиссии, изданные в 1890 году, авторы «Энциклопедии» включили разделение гумуса на фракции. Свободные органические кислоты, названные ими «кислый гумус», можно воспринимать как ныне выделяемую первую фракцию в фракционно-групповом составе гумуса. Нерастворимое в водном растворе соляных и серных кислот, образующее с известью соединение названо «сладкий гумус» или «перегнойно-кислая известь», возможно, это прообраз гуматов кальция.

С. Н. Чуков считает, что на долю гумуса приходится около 50 % органического углерода: «Хотя гумусовые вещества в количественном отношении составляют немного более половины органического углерода в почвах и наземных водах, их роль в функционировании экосистем неизмеримо превышает их количественную долю» (2004, с. 127).

В состав гумуса включают гуминовые кислоты, фульвокислоты (их объединяют под общим названием «гумусовые кислоты») и гумин. Структурные элементы гумусовых кислот: углеводы 20–30 %, аминокислоты 5-10, ароматические соединения – от 3–5 до 25–30.

Гуминовые кислоты (ГК). Это специфические природные высокомолекулярные соединения, которые образуются при трансформации растительных остатков вне живых организмов под действием фауны, микроорганизмов, абиотических факторов (рис. 36).

Элементный состав молекулы ГК: углерод – 46–61 % по массе, кислорода – 33–38, азота и водорода – по 3–6, также в его состав входят фосфор и сера.

Рис. 36. Структурная формула гуминовой кислоты

Среднее содержание углерода составляет 55–61 % в ГК черноземов, 49–58 % – в ГК сероземов, 46–53 % – в ГК дерново-подзолистых почв, в ФК этих типов почв – 36–44 % (Орлов, Гришина, 1981).

Химическая и биологическая активность ГК обусловлена содержанием двойных углерод-углеродных связей, хиноидных, фенольных, карбоксильных, спиртовых, альдегидных, аминогрупп.

ГК практически нерастворимы в воде, только в щелочах. Они активно связывают практически все тяжелые металлы, препятствуют их миграции (ЕКО 400–500 мг-экв/100 г). ГК адсорбируют и химически связывают пестициды и другие органические соединения. ГК способствуют формированию водопрочной структуры, повышают ЕКО, буферность, создают долговременные запасы питательных элементов, микроэлементов.

Фульвокислоты (ФК). Преобладают в почвах с рН меньше 7, ЕКО составляет 600–800 мг-экв/100 г. Это наиболее растворимая часть гумуса, более подвижная, обогащена алифатической частью и функциональными группами (рис. 37).

Рис. 37. Структурная формула фульвокислоты

Природа обусловливает различия в свойствах гуминовых и фульвокислот. Ранее нами было показано, что в молекулах гуминовых кислот не только больше ароматических компонентов, но они и представлены в основном четырехзамещенными бензольными ядрами. В молекулах фульвокислот арильных компонентов меньше, и основной компонент ароматической части – фенол, иначе, карболовая кислота. Преобладает разветвление алкильных ветвей в молекулах фульвокислот по сравнению с гуминовыми кислотами, ФК отличает и большая насыщенность кислородом как арильных, так и алкильных компонентов (Околелова и др., 1987, 1992).

Гумин – неэкстрагируемая часть гумуса, не извлекается из почв щелочными растворами даже при нагревании. Наиболее прочно связан с минеральной частью, глинистыми минералами.

Состав гумуса можно представить в виде формулы:

ГУМУС= ГК + ФК + гумин

Фракционно-групповой состав гумуса – распределение групп гумусовых кислот по формам связи. Фракции различаются с химической точки зрения по отношению к растворителям, и по роли в почвообразовании.

1. ГК и ФК свободные или связанные с полуторными окислами, наиболее мобильная и растворимая часть.

2. ГК и ФК, связанные с кальцием (гуматы и фульваты кальция). Фракция играет значительную роль в плодородии почв, закреплении Са, обеспечении растений азотом, фосфором, калием, малорастворима, менее мобильна, чем первая фракция.

3. ГК и ФК, связаннные с минеральной частью. Эта фракция играет основную роль в формировании запасов гумуса.

Запасы гумуса – величина, которая характеризует содержание гумуса в генетическом горизонте или любом слое почвы в расчете на определенную площадь.

Запасы гумуса определяют по формуле:

где З – запас гумуса, т/га; С – содержание гумуса, %; h – мощность, см; d – плотность г/смз.

Запасы гумуса в 0–20 см слое чернозема типичного составляют 224 т/га, чернозема обыкновенного – 137, темно-каштановой почвы – 99.

Процессы преобразования и накопления органического вещества в почвах

В почвах одновременно протекают два взаимно противоположных процесса – образование новых органических соединений, синтез гумуса, и разложение органических соединений до неорганических составляющих — минерализация.

Гумификация – глобальный процесс. Гумус образуется из обломков макромолекул или их мономеров, которые попадают в почву благодаря ее биоте. Это сахара, аминокислоты, лигнин, белки и другие химические соединения, а также корневые выделения живых растений.

Минерализация. В процессе минерализации сложные органические вещества при участии микроорганизмов превращаются в простые – воду, СО2, соли в виде ионов. Минерализация – источник поступления в почвы доступных растениям элементов – биофилов в концентрациях, близких к их потребностям. Продукты минерализации попадают в почвенный раствор и становятся элементами питания – вновь включаются в биологический круговорот, 80–90 % органических остатков участвуют в этом процессе.

Если интенсивность разложения растительных остатков слабее, чем их поступление, то в верхней части почвы образуются органогенные горизонты: лесная подстилка (Ао), степной войлок (Ао), торфяник (Ат).

Экологические функции гумуса

Аккумулятивная функция. Она заключается в накоплении элементов питания и энергии для биоты.

В гумусе сосредоточено 90–99 % всего азота, больше половины фосфора и серы, кальций, магний, железо и практически все необходимые микроорганизмам микроэлементы. Для азота связывание в органическое соединение – единственный путь предотвращения его потерь из почвенного профиля за счет растворения и выноса в грунтовые воды (Безуглова, 2009). В процессе минерализации гумуса постепенно высвобождаются элементы питания, они поступают в почвенный раствор уже в доступной для растений форме.

Транспортная функция. Гумус с катионами и другими органическими веществами может образовывать устойчивые, но растворимые и способные к геохимическим миграциям соединения. В форме комплексных органо-минеральных соединений в основном с ФК активно мигрирует большинство микроэлементов, железо, значительная часть соединений фосфора и серы.

Читайте также:  Чем можно подкормит помидоры

Значение реакций взаимодействия гуминовых веществ с минеральными компонентами О. С. Безуглова (2009) характеризует следующими положениями:

– под влияние гуминовых веществ преобразуются минералы почвообразующей породы;

– гуминовые вещества способствуют растворению многих минеральных соединений;

– гуминовые вещества образуют пленки на поверхности почвенных частиц, а также труднорастворимые соединения с рядом элементов, ингибируя тем самым процесс выветривания;

– органические вещества влияют на окислительное состояние минеральных соединений, так как участвуют в окислительно-восстановительных взаимодействиях;

– органо-минеральные взаимодействия способствуют агрегированию почвы.

Регуляторная. Гумус участвует в регулировании практически всех почвенных свойств. Регуляторная функция включает:

– формирование почвенной структуры и водно-физических свойств;

– установление равновесий в реакциях ионного обмена, кислотно-основных окислительно-востановительных процессов;

– оптимизация условий минерального питания за счет влияния гумусовых веществ на растворимость минеральных компонентов и доступность живым организмам;

–поддержание теплового режима;

– регулирование процессов внутрипочвенной дифференциации химического состава.

Протекторная. Гумус защищает или сохраняют почвенную биоту, растительный покров от неблагоприятных экстремальных ситуаций. Богатые гумусом почвы более устойчивы к эрозии, дольше сохраняют свойства при орошении даже минерализованными водами, выдерживают большие техногенные нагрузки. При равных условиях токсичное действие тяжелых металлов (ТМ) в плодородных почвах сказывается на растения в меньшей степени, чем в малогумусных почвах, за счет высокой поглотительной способности более плодородных почв.

Гумус прочно связывает радионуклиды, детергенты, пестициды. Трансформация самих гумусовых соединений со временем сопровождается разрушением некоторых токсичных органических соединений или превращением их в неактивные (нетоксичные).

Физиологическая. Различные ГК и их соли стимулируют прорастание семян, активизируют дыхание растений, повышают продуктивность животных. Гумусовые препараты сдерживают развитие злокачественных опухолей, повышают устойчивость организмов к воспалительным процессам.

Гуминовые вещества в медицине (Безуглова, 2009). Бальнеологические свойства обусловлены наличием микроэлементов, физиологически активных веществ. Лечебный эффект объясняется тем, что одновременно идет воздействие физических (активная удельная поверхность, термические свойства), механических, химических (основные элементы, гумус, гормоны), биологических (бактерии, грибы, антибиотики) компонентов.

Для лечения различных воспалений торфот (его делают на основе гумуса) применяют более чем в 30 странах. Торф, пеллоиды, грязи используют на курортах Чехии, Болгарии, Украины. Известно более 600 препаратов в форме торфов и торфяных аппликаций. Их применяют для лечения сосудистых облитераций, ревматических заболеваний, хронических инфекционных полиартритов, болезни Бехтерева, гинекологических заболеваний и желчных путей, воспалений послеоперационных и посттравматических, предстательной железы, парадонтозах.

Неспецифические органические соединения почв

Углеводы. Их доля в почве от 5–7 до 25–30 % от Собш. С растениями в почву поступает 2–14 т углеводов за год. Есть все классы – моно-, ди-, олиго-, полиуглеводы, последние более устойчивы. Легко окисляются. Основные представители: целлюлоза (ее больше всего, в древесине – 50–60, а в травах около 30 %), хитин, крахмал (табл. 9).

Источник

Органическое вещество почвы называется

Органическое вещество почвы (гумус)

Важной частью почвы является органическое вещество. Органическая часть почвы представляет очень сложный комплекс разнообразных органических веществ.

Одним из главных признаков плодородия почвы является наличие в ней гумусовых веществ, которые обуславливают чёрную, тёмно-серую и серую окраски.

Помимо вышеуказанных цветов, соединения окислов железа придают почве красноватый и бурый цвет, от присутствия закисей железа формируются голубовато-зеленоватые тона; кремнезём, углекислый кальций, каолиниты обуславливают белую и белесую окраску. Эти же тона придают почве наличие гипса и некоторых легкорастворимых солей.

Почву по содержанию гумуса и цвету можно условно разделить на следующие категории по плодородию (табл. 2).

Таблица 2. Категории почвы по окраске, содержанию гумуса и плодородию

Окраска почв Содержание гумуса, % Категории
Очень чёрная 10–15 Высокогумусная, очень плодородная (m = 0,05 г)
Чёрная 7–10 Гумусная, плодородная (m = 0,1 г)
Тёмно-серая 4–7 Среднегумусная, среднеплодородная (m = 0,2 г)
Серая 2–4 Малогумусная, среднеплодородная (m = 0,3 г)
Светло-серая 1–2 Малогумусная, малоплодородная (m = 0,4 г)

Содержание органического вещества, и в том числе гумуса в пахотном слое разных почв сильно колеблется. Наиболее высоким содержанием органического вещества отличается верхний слой почвы (0-20 см).

Первичными источниками органического вещества почвы и биосферы являются так называемые первичные продуценты, или автотрофы – организмы, способные к самостоятельному синтезу органического вещества из минеральных соединений.

В почву поступают не только органические остатки отмерших растений (первичное органическое вещество), но и продукты их микробиологической трансформации, а также останки животных (вторичное органическое вещество). Сложность и разнообразие органических веществ почвы уже заранее предопределены разнообразием поступающих в почву органических остатков и условиями их дальнейшей трансформации.

В составе органического вещества почвы находятся все соединения растений, бактериальной и грибной плазмы, а также продуктов их последующего взаимодействия и трансформации. Схема, характеризующая систему органических веществ почвы, представлена на рис. 6.

Рис. 6. Система органических веществ почвы (по Д.С. Орлову)

Органические вещества почвы представлены в виде веществ органической природы, входящих в состав организмов (живых и мертвых), а также специфических гумусовых веществ.

Неспецифические органические вещества – вещества, встречающиеся не только в почве (углеводы, аминокислоты, белки, органические кислоты, лигнин и др.). Они составляют единицы процентов общего содержания органического вещества почв.

Специфические гумусовые вещества – тёмноокрашенные органические соединения, входящие в состав гумуса и образующиеся в процессе гумификации растительных и животных остатков в основном только почве. В составе гумусовых веществ имеются и гидрофобные, и гидрофильные группы.

Гумусовые вещества представляют собой смесь различных по составу и свойствам высокомолекулярных азотсодержащих органических соединений, объединенных общностью происхождения, некоторых свойств и чертами строения. На их долю приходится 85-90 % общего количества содержащегося в почвах органического вещества. Перечислим важнейшие характеристики гумусовых веществ:

1) специфическая окраска, варьирующая от темно-бурой, почти черной, до красновато-бурой и оранжевой для различных групп и фракций гумусовых веществ;

2) кислотный характер, обусловленный карбоксильными группами;

3) содержание углерода от 36 до 62 %, азота – от 2,5 до 5% в различных группах и фракциях;

4) наличие во всех группах циклических фрагментов, содержащих 3-6% гетероциклического азота;

5) наличие негидролизуемого азота в количестве 25-35% от общего;

6) большое разнообразие веществ по молекулярным массам, лежащим в пределах от 700-800 до сотен тысяч.

Гумусовые вещества подразделяются на две главные группы, различающихся по составу и свойствам: гуминовые кислоты и фульвокислоты. Кроме того, выделяют еще третью группу – гумины.

Гуминовые кислоты – группа темно-окрашенных (от бурой до черной) гумусовых кислот, которые хорошо растворяются в щелочных растворах, но не растворяются в минеральных кислотах и воде. Основными компонентами молекулы является ядро, периферические боковые цепи и функциональные группы. Молекулярная масса гуминовых кислот может достигать десятков и сотен тысяч единиц. Наличие функциональных групп обуславливает очень высокую емкость поглощения катионов. Образующиеся при этом соли гуминовых кислот называются гуматы.

Фульвокислоты – группа светлоокрашенных (от желтой до бурой) гумусовых кислот, сходных по составу и строению с гуминовыми кислотами, но имеющих ряд существенных отличий: более выраженная периферическая часть молекулы и, в меньшей степени ядерная, более низкая молекулярная масса, хорошо растворяются не только в щелочных растворах но и в кислотах, воде, на чем основано их отделение от гуминовых кислот, больше карбоксильных и фенолгидроксильных групп и более высокая емкость катионного обмена. Фульвокислоты обладают большей подвижностью в почвенном профиле и агрессивностью по отношению к минеральной части почв. При взаимодействии фульвокислот с катионами образуются соли, которые называются фульваты.

Гумины (негидролизуемый остаток) – совокупность соединений гуминовых и фульвокислот, очень прочно связанных с минеральной частью почв. При выделении гуминов из почвы и разрушении этих связей происходит гидролитическое расщепление молекул гуминвых и фульвокислот, что не позволяет детально изучить состав этой группы соединений.

Органическое вещество участвует в формировании характерных почвенных признаков, в процессах трансформации, массопереноса, питания растений. Все группы органического вещества выполняют различные роли – агрегатообразование с участием гумусовых и глиногумусовых соединений, взаимодействие гумуса с минералами и формирование микробиологически и термодинамически устойчивых структур; формирование сложения и влияние гумусовых веществ на водно-физические свойства почвы; формирование лабильных миграционноспособных соединений и вовлечение минеральных компонентов почвы в биогеохимический круговорот; формирование сорбционных, кислотно-основных и буферных свойств почвы, источник элементов минерального питания высших растений (N, Р, К, Са, микроэлементов); источник биологически активных веществ в почве, оказывающих влияние на рост и развитие растений, мобилизацию питательных веществ и т.д. (природные ростовые вещества, ферменты, витамины и др.

Читайте также:  Семена для выращивания комнатных цветов

Органическое вещество почвы представлено живой биомассой (почвенная биота и живые корни растений), органическими остатками растений, животных, микроорганизмов, продуктами разной степени их разложения и специфически новообразованными гумусовыми веществами (гумусом).

Органическое вещество и его превращение в почве играют важную и разностороннюю роль в ее генезисе и формировании основных свойств, с которыми связаны развитие плодородия и фитосанитарные функции почвы.

Различают следующие формы нахождения органического вещества в почве.

  1. Неразложившиеся или слаборазложившиеся остатки преимущественно растительного происхождения, буроокрашенные. Образуют лесную подстилку, степной войлок, торфяные горизонты. Это так называемый грубыйгумус, или мор.
  2. Остатки в стадии глубокого разложения, образующие рыхлую темно-бурую или черную массу, под микроскопом – полуразложившиеся остатки.

Эта форма получила названиемодер (труха).

  • Специфические органические образования, представляющие собой собственно гумус, составляющие 85–90% от органического вещества почвы.

Это – муллевая форма. Состав органических остатков, поступающих в почву, довольно сложный.

Основную массу их представляют углеводы – сахароза, фруктоза, глюкоза, крахмал, клетчатка.

Органическая часть почвы

Вместе с органическими веществами в почву поступают азотсодержащие соединения – аминокислоты, белки, алкалоиды, а также лигнин, дубильные вещества, смолы, органические кислоты (щавелевая, лимонная, винная.

Элементный состав органического вещества, поступающего в почву, характеризуется тем, что оно примерно на 5% (в пересчете на сухое вещество) представлено углеродом, водородом, азотом; остальные 5% – многочисленная группа зольных элементов – кальций, магний, калий, натрий, кремний, фосфор, железо, сера, а также микроэлементы – медь, бор, марганец, цинк и др.

Органические остатки, поступившие в почву, подвергаются различным биохимическим и физико-химическим преобразованиям.

Подъем ферментов, выделяемых микроорганизмами, изменяется анатомическое строение остатков, а сложные органические соединения распадаются на более простые – их называют промежуточными продуктами преобразования органических остатков.

В результате гидролиза белков образуются пептоны, пептиды, и свободные аминокислоты. При гидролизе сложных белков вместе с кислотами образуются углеводы, фосфорная кислота, азотсодержащие гетероциклические основы.

Разложение жиров сопровождается образованием лигнина и жирных кислот.

Продуктами распада лигнина являются фенолы.

Много промежуточных соединений образуется при разложении углеводов – моносахариды, органические кислоты, альдегиды и др.

Процесс синтеза органических веществ протекает в условиях биокатализа, действия ферментов, выделяемых микроорганизмами. Сущность этого процесса сводится к тому, что промежуточные продукты разложения opганического вещества, попадая под воздействием реакций биохимического окисления, поликонденсации, полимеризации, дают качественно новые органические соединения, которые называют гумусовыми, или перегнойными, а процесс их образования – гумификацией.

Обычно под гумусом понимают группу темноокрашенных высокомолекулярных азотсодержащих органических веществ кислотной природы, большая часть которых – коллоиды.

Собственно гумусовые вещества составляют 85–90% общего количества органических соединений почвы. Наибольшее количество и качество гумуса дает травянистая растительность и ее корневая система. В образовании гумуса принимают участие простейшие животные почв и микроорганизмы, которые разрушают сложные органические вещества. Такой процесс называют биохимическим. В результате образуются две основные группы соединений:

  • неспецифичный гумус (лигнин, целлюлоза, воски, смолы и др. полуразрушенные соединения),
  • специфический гумус (гуминовые и фульвокислоты, гумин).

Строение гумуса очень сложное и не совсем выясненное. Гумусовые вещества представляют собой гетерогенную, полидисперсную систему высокомолекулярных, азотсодержащих, ароматических органических соединений кислотной природы.

В их составе выделяют три группы:

  • гуминовые кислоты,
  • фульвокислоты,
  • гумин, или негидролизуемый остаток.

Качественное соотношение этих групп характеризует групповой состав гумуса. В составе групп выделяются фракции, отличающиеся друг от друга некоторыми свойствами (растворимость, молекулярная масса, элементный состав и др.).

Количественное соотношение фракций характеризует фракционный состав гумуса.

Гуминовые кислоты — группа темно-окрашенных (от бурой до черной) гумусовых кислот (бурые, серые, гиматомелановые), которые хорошо растворяются в щелочных растворах, но не растворяются в минеральных кислотах и в воде.

Лучший гумус тот, в котором преобладает гумин с гуминовой кислотой, как в наших дерновых почвах или в черноземных. В большинстве почв суши преобладает фульватный состав гумуса.

Наибольшее количество доброкачественного гумуса имеют черноземы (4–15%). Поэтому эти почвы самые плодородные.

В гумусе накапливаются многочисленные элементы питания растений — N, Р, S, К, Са, микроэлементы, которые высвобождаются при разложении его гетеротрофами.

Процессы разложения гумусовых веществ сопровождаются выделением углекислого газа, необходимого зеленым растениям для фотосинтеза. Кроме того, гумус является источником биологически активных веществ в почве (ферменты, витамины, ростовые вещества), положительно влияющих на рост и развитие растений, мобилизацию элементов.

Система органических веществ почвы

Органическое вещество почвы подразделяется на две группы: органические остатки и гумус(по Д.С. Орлову,1985) (рис. ).

Неразложившиеся остатки, которые видны невооруженным глазом или под лупой, составляют 5-10 % от общего содержания органического вещества почвы. Входящие в их состав органические компоненты являются источником образования гумуса, на долю которого в большинстве минеральных почв приходится до 90-99 % от общего содержания органического вещества.

Гумусом называют сложный динамический комплекс органических соединений образующихся при разложении и гумификации органических остатков и продуктов жизнедеятельности живых организмов. В составе гумуса различают промежуточные продукты распада и гумификации, неспецифические органические соединения и специфические гумусовые вещества.

Неспецифические органические или индивидуальные соединения — это обширная группа органических веществ поступающих в почву из разлагающихся растительных и животных остатков, с прижизненными выделениями корней, макро- и микроорганизмов.

Сюда относятся лигнин, целлюлоза, белки, липиды, углеводы и другие, хорошо известные в биохимии соединения

При их дальнейшей трансформации образуются промежуточные продукты разложения и гумификации.

Они составляют группу разнообразных и плохо изученных органических соединений почвы. Эту систему веществ можно разделить на две категории: 1) высокомолекулярные продукты разложения, 2) низкомолекулярные соединения.

О природе высокомолекулярных соединений мы фактически не имеем достоверных материалов.

Предположительно сюда могут быть отнесены продукты частичного гидролиза, окисления и деметоксилирования лигнина, белков, углеводов и т.п., которые еще не могут считаться специфическими гумусовыми веществами, но также уже не идентифицируются как характерные для живых организмов индивидуальные органические соединения.

К низкомолекулярным органическим соединениям относятся различные аминокислоты, моносахариды, соединения фенольной природы.

Обычным компонентом среди соединений этой группы являются низкомолекулярные органические кислоты алифатического ряда: щавелевая, янтарная, яблочная, муравьиная и т.п. В большинстве случаев органические кислоты присутствуют в почве в виде солей, так как активно взаимодействуют с минеральной частью. Их содержание может достигать 30-40 % от всей суммы водорастворимых органических веществ. Особенно активно образуются низкомолекулярные органические кислоты при разложении лесных подстилок и в анаэробных условиях.

Неспецифические соединения — индивидуальные органические соединения и промежуточные продукты распада и гумификации.

Судьба веществ этой группы в почве может быть различной. Часть из них усваивается микроорганизмами, частично они распадаются до конечных продуктов, а какое-то количество включаясь в процесс гумификации трансформируется в специфические гумусовые вещества.

Необходимость выделения в составе гумуса специфических гумусовых веществ и неспецифических органических соединений обусловлена тем, что гумусовые вещества накапливаются преимущественно в почвах и являются специфическим продуктом почвообразования, тогда как неспецифические соединения синтезируются в живых организмах и поступают в почву в составе растительных и других органических остатков.

Только в составе гумуса полностью доминируют гумусовые вещества составляя до 90-95 % его массы .

Специфические гумусовые вещества представлены гумусовыми кислотами, негидролизуемым остатком и прогуминовыми веществами. Прогуминовые вещества —“молодые” гуминоподобные продукты во многом сходные с промежуточными продуктами распада органических остатков. Обнаруживаются они при детальном фракционировании выделенных из почв гумусовых соединений и изучены очень слабо.

Негидролизуемый остаток (гумин) представляет собой ту часть гумуса почвы, которую не удается экстрагировать разбавленными растворами щелочей, кислот или органическими растворителями.

Он включает: гумусовые кислоты, прочно связанные с минеральной частью, в первую очередь с глинистыми минералами и декарбоксилированные гумусовые вещества, утратившие способность растворяться в щелочах. Кроме того, в составе негидролизуемого остатка найдены лигнин , целлюлоза, полисахариды, углистые частицы, находящиеся на разных стадиях разложения растительные остатки и обломки хитинного покрова насекомых.

Оценка содержания гумуса в пахотных почвах России

По данным Л.Н. Александровой (1980) в подзолистых почвах на долю негумусовых веществ в составе гумина может приходиться до 60%. Поэтому относить негидролизуемый остаток к группе специфических гумусовых веществ следует с известной долей условности.

Дана оценка содержания гумуса в минеральных почвах России, основанная на теоретическом, расчетном и экспертном подходах. Представлен обзор и проведен анализ градаций почв по содержанию гумуса, разработанных Почвенным институтом им.

В.В. Докучаева (1977, 1985, 1997, 2001, 2003, 2004) и Д.С. Орловым с соавторами (1978, 2004). Дано теоретическое обоснование и предложена шкала почв России по степени гумусированности, где в качестве точки отсчета представлены значения минимального содержания гумуса, а объективные интервалы шкалы значений содержания гумуса основаны на величинах межлабораторных допустимых расхождений.

Читайте также:  Плодородные почвы для пустыни

Введено понятие глобальной оценки, охватывающей широкий спектр почв России и отражающей различия между типами почв по содержанию гумуса, и дифференцированной оценки, характеризующей различия внутри типа (подтипа) почв по величинам этого показателя. Изложены методические приемы по определению минимально допустимых, оптимальных и максимально допустимых значений содержания гумуса в пахотных горизонтах почв.

Химический состав почв представлен тремя группами компонентов.

Это вещества, ранее входившие в состав материнских пород; вещества, поступающие в почву с атмосферными и пылевыми осадками и, наконец, органические вещества, принадлежащие к различным классам соединений и накапливающиеся в первую очередь за счет остатков высших растений и микроорганизмов, а в почвах преобразуемые в гумус.

Наиболее актуальна третья группа, являющаяся практически чуть ли не единственным источником самых различных органических соединений, которыми теоретически и практически обусловлено как формирование гумусовых горизонтов фактически любых почв, так и образование, и накопление в почвах специфических органических соединений — гумусовых веществ.

Именно эти вещества придают почвам своеобразные облик и свойства, отличающие их от других природных тел [16].

Согласно Александровой, гумусо-образование, то есть формирование гумуса, это процесс специфичный для почв, в отличие от гумификации, протекающей во многих природных средах — торфах, илах, сапропелях, углях и др. (в том числе и в почвах) и приводящей к образованию гумусовых веществ.

В Большой Российской энциклопедии [3] дано следующее определение гумуса: “Гумус — динамичная система, состоящая из совокупности растительных и животных остатков, утративших черты анатомического строения и претерпевающих различные этапы разложения и синтеза; основная и важнейшая составляющая часть органического вещества почвы”.

В словаре почвенных терминов США [25] приведено иное определение: “Гумус — это более или менее стабильная фракция почвенного органического вещества, остающаяся после того, как главная часть попавших в почву растительных или животных остатков разложилась”.

Гумус является одним из важнейших показателей, определяющих генезис и плодородие почв.

В “Классификации и диагностике почв СССР” содержание гумуса рассматривается на видовом уровне.

Видовые характеристики по содержанию гумуса соответствуют определенным типам почв (табл. 1).

В “Классификации почв России” [11], “Классификации и диагностике почв России” [10], в отличие от предыдущей классификационной системы, предложены более общие критерии идентификации почв по содержанию гумуса на видовом уровне:

Виды по содержанию гумуса в аккумулятивно-гумусовом горизонте, % от массы почвы (по [11]).

Для почв с темно-гумусовым и агро-темно-гумусовым горизонтом

1. Слабо-гумусированные 9

Таблица 1. Разделение типов почв СССР на виды по содержанию гумуса

В системе показателей Гришиной и Орлова [5] приведены обобщенные для всех типов почв градации по содержанию гумуса (табл. 2). По их мнению, небольшое число уровней показателя выделено для облегчения группировок почв. Эту же цель преследуют и целочисленные пределы для каждого Уровня.

Как считают авторы, хотя такой подход несколько упрощает характеристику природной обстановки, но все же каждый из уровней с некоторым приближением отвечает реальным свойствам почв конкретных типов. Так, высокое содержание гумуса 6—10% действительно свойственно черноземам, а низкое и очень низкое (2—4 и Таблица 2. Уровни содержания гумуса для группировки почв

Оценочные шкалы Гришиной, Орлова [5], Орлова с соавторами [16] и приведенную в “Классификации и диагностике почв России” [10] по степени гумусированности почв можно рассматривать как глобальные, отражающие в определенной степени генетическую принадлежность почв.

В то же время в работе Стокозова с соавторами было показано, что система Гришиной, Орлова [5] не может быть использована для объективной оценки гумусового состояния почв пашни, так как предложенные градации не были увязаны с конкретным типом почвы и его гранулометрическим составом.
На основе массового материала ВНИПТИХИМ разработал предварительные градации для пахотных почв России по степени гумусированности, в основу которых положены тип (подтип) почвы и три группы по гранулометрическому составу.

Следует отметить, что ранее в “Классификации и диагностике почв СССР” [9] три подтипа каштановых почв по содержанию гумуса разделяли на две группы с учетом гранулометрического состава.
В отмеченных выше “Временных рекомендациях по отбору почвенных проб для определения гумуса при агрохимическом обследовании пахотных земель России” [4], предложенных коллективом авторов от ВНИПТИХИМа, Почвенного института им.

В.В. Докучаева, ВПНО “Рос-сельхоз-химия”, почвы по степени гумусированности подразделены на пять групп — очень низкая, низ-
кая, средняя, повышенная, высокая. Для черноземных почв группы выделяются с шагом в 1 % по содержанию гумуса, а для остальных почв, за некоторым исключением, в первых группах интервал составляет 0.5%, а в последних (трех) — 1%.

По-нашему мнению, несмотря на имеющиеся косвенные экспресс-методы установления значений С min, для более точной оценки величин минимального содержания гумуса его следует определять в длительных опытах с бессменными чистыми парами.

Таблица 4. Градации пахотных почв по содержанию гумуса, %

Учитывая, что в абсолютном большинстве многолетних стационарных полевых опытов России варианты с бессменным чистым паром не предусмотрены, считаем целесообразным их незамедлительную закладку.

Варианты с бессменным чистым паром могут быть заложены на старопахотной почве, находящейся вблизи стационара с многолетними опытами. Через 10—15 лет парования на этой почве произойдет потеря основных запасов органического вещества, и содержание гумуса в ней установится на уровне, достаточно близком к минимальному.

Было предложено при оценке степени выпаханности черноземов с позиций их гумусового состояния использовать в качестве точки отсчета значения минимального содержания гумуса, а объективные интервалы шкалы значений содержания гумуса согласно строить на основании величин межлабораторных допустимых расхождений.

Межлабораторные допустимые расхождения рассчитаны на основании данных бесповторност-ного анализа С орг, определяемого способом сухого сжигания.

D = 2.8S для разности двух единичных измерений, где D — абсолютное межлабораторное допустимое расхождение, S — среднее квадратическое отклонение. D — наименьший возможный размер класса в шкале данного почвенного признака.

В качестве примера приведем шкалу градаций выпаханности для типичных и выщелоченных черноземов Среднерусской возвышенности по содержанию гумуса (%):

тяжелосуглинистые — эродированные — 6.9; среднесуглинистые — эродированные — 6.3.

С учетом вышеизложенного составлена шкала градаций пахотных почв России по степени гумусированности пахотного слоя, состоящая из четырех классов (табл. 5).

Для данной таблицы величина D взята из работы по материалам межлабораторного аттестационного эксперимента, проведенного в СССР на стандартных образцах при определении органического углерода по методу Тюрина. В случае внедрения в системе аналитических лабораторий агро. хим. службы России вместо методик определения содержания органического углерода в почвах способом сухого сжигания на автоматических анализаторах можно использовать информацию по межлабораторному эксперименту, приведенную в работе [2], с целью построения шкал на этой основе.

Первый класс — содержание гумуса меньше минимального — включает почвы, частично утратившие инертную компоненту гумуса в результате эрозионного выноса почвенных частиц, перемешивания гумусового горизонта с нижележащими, механического выноса тонкодисперсных частиц при уборке пропашных культур и т.д.

Второй — слабо-гумусированные, третий — средне-гумусированные — включает почвы, в той или иной степени утратившие трансформируемое органическое вещество по отношению к его содержанию в целине в результате биологической минерализации.

Четвертый — сильно-гумусированные — включает пахотные почвы, близкие по содержанию гумуса к целинным.

В предложенной шкале градаций пахотных почв России дана дифференцированная оценка содержания гумуса, учитывающая его трансформируемый компонент, который в определенной степени характеризует эффективное плодородие почв.

Здесь следует отметить весьма важное обстоятельство.

Формирование и преобразование гумуса является совокупностью протекающих в почве физических, физико-химических, химических, биохимических и биологических процессов. Однако используемое в настоящее время его разделение на лабильные, активные, легкоразлагаемые, с одной стороны, и устойчивые, инертные, стабильные группы фракций, с другой стороны, носит весьма условный характер.

Так, например, если речь идет о гумусовых веществах черноземов, извлекаемых непосредственно 0.1 н. раствором NaOH, то следует говорить о лабильности с позиций химического фракционирования.

Если проводится биокинетическое фракционирование органического вещества почвы согласно схеме Семенова с соавторами, то оно в определенной степени характеризует биологические почвенные процессы. Трансформируемое органическое вещество, рассчитанное на основе формулы С trans = С tot — С min [6, 7], наиболее адекватно отражает нативную лабильность органического вещества почвы.

Источник

Adblock
detector