Меню

Основной показатель плодородия почвы это

Новости

Основные показатели почвенного плодородия. Органическое вещество почвы.

Плодородие почвы – способность почвы обеспечивать рост и воспроизводство растений всеми необходимыми им условиями.
Органическое вещество почвы – это совокупность всех органических остатков живых организмов, продуктов их метаболизма, а также специфические органические соединения – почвенный гумус. По современным представлениям все органические вещества, находящиеся в почвенной массе генетических горизонтов, делятся на 2 группы:
— неспецифические, то есть вещества не почвенного происхождения, имеющие фито-, зоо-, микробиоценотическую природу и поступающие в процесс почвообразования как отмирающая биомасса (органические остатки) и как продукты жизнедеятельности живых организмов;
— почвенный гумус, или специфические органические вещества почвенно-генетической природы, присущие только почвам.
Содержание гумуса в почве – важный показатель ее потенциального плодородия (суммарное плодородие почвы, определяемое её свойствами, как приобретёнными в процессе почвообразования, так и созданными человеком), активности в ней всех биологических процессов. Это часть органического вещества почвы, представляет собой сложный динамический комплекс специфических азотсодержащих веществ, образующихся в результате жизнедеятельности почвенных организмов и процесса разложения и гумификации органических остатков.
Количество гумуса в почве бывает различным и зависит от многих факторов, особенно от типа почвы, природно-климатических условий, специализации севооборота, характера и интенсивности земледелия. Больше всего гумуса в верхних слоях почвы, вниз по профилю содержание органических веществ, в том числе и гумуса, снижается.
При оптимальных биологических процессах количество гумуса в почве со временем увеличивается. Если систематически вносятся органические удобрения и соблюдаются научные принципы ведения земледелия, скорость накопления гумуса возрастает еще больше.
На долю гумуса приходится 85-90% от общего количества органического вещества почвы, он состоит из основных групп: гуминовые кислоты; фульвокислоты; гумины.
Соотношения между этими группами определяют качественную характеристику гумуса разных типов почв.
Гуминовые кислоты – группа темноокрашенных гумусовых кислот, растворимых в щелочах и нерастворимых в кислотах, это высокомолекулярные азотсодержащие органические кислоты циклического строения. В зависимости от концентрации и типа почвы растворы гуматов имеют вишнево-коричневую или черную окраску. Гуминовые кислоты состоят из углерода (52-62%), водорода (2,8-5,8%), кислорода (31-39%) и азота (1,7-5%). Больше всего углерода в гуминовых кислотах черноземов. Имеют функциональные группы, способные к обменному поглощению катионов.
Фульвокислоты – группа гумусовых кислот, легко растворимых в воде, щелочах и кислотах. В отличие от гуминовых кислот содержат меньше углерода и больше кислорода. Фульвокислоты окрашены в желтый или бурый цвет. Они более подвижны и легко передвигаются по профилю почвы. Фульвокислоты, обладая кислой реакцией и хорошей растворимостью в воде, довольно хорошо разрушают минеральную часть почвы, этот процесс зависит от количества гуминовых кислот – чем меньше в почве гуминовых кислот, тем сильнее действие фульвокислот. Имеют функциональные группы, способные к обменному поглощению катионов, образуют растворимые соли кальция, магния и др. (фульваты). Фульвокислоты более подвижны, азотные соединения связаны в них менее прочно, поэтому легко подвергаются кислотному гидролизу, чем азотные соединения гуминовых кислот. В гуминовых кислотах содержится 15-30%, а в фульвокислотах – 20-40% азота почвы.
Гумины – комплекс гуминовых и фульвокислот, отличающийся от них тем, что более прочно связан с минеральной частью почвы, более устойчив к разложению микроорганизмами, нерастворим в кислотах, щелочах и органических растворителях. Азот гуминов составляет 20-30% общего азота почвы.
Образование гумуса – очень сложный процесс биологических и биохимических превращений остатков растительного и животного происхождения в почве, главным образом в третьем, заключительном слое листового и травяного опада – гумусовом горизонте.
Любая почва населена различными микроорганизмами: грибами, бактериями, актиномицетами, а также водорослями и простейшими. Их численность в разных почвах неодинакова. Микробная масса на 1 га составляет 5-7 т. Микроорганизмы – наиболее энергичная и подвижная часть почвы. Их важная роль в почвенных процессах и питании растений определяется не только тем, что эти живые существа обладают колоссальным ферментативным действием на окружающий мертвый субстрат, но и огромной активной поверхностью, на которой с большой скоростью осуществляются сложнейшие превращения различных соединений почвы и вносимых удобрений.
Таким образом, гумус – это термин, объединяющий огромный комплекс или группу химических веществ, в состав которых входит как органическая часть (гуминовые и фульвокислоты), так и неорганическая составляющая – химические элементы неорганического происхождения, или проще сказать, минералы (входящие в состав гуматов и фульватов).
Гумусовое состояние почв – важнейший показатель количественной оценки плодородия. Это связано с тем, что гумус выступает как интегральный показатель плодородия, объединяющий в себе ряд свойств почв. С гумусовыми веществами связаны многие условия жизни растений, которые отражаются в свойствах почвенного профиля: мощность и богатство гумусового профиля, пригодность к сельскохозяйственному использованию, реакция среды, физическое состояние почвенной массы, ее биохимическую активность и т.д. Поэтому, оценивая гумус почв, оцениваются сразу многие почвенные характеристики. Разный качественно-количественный состав органического вещества характеризует гумусовое состояние почвы.
Накопление органического вещества является основным почвообразовательным процессом, превращающим материнскую породу в почву. Гумус является источником большей части доступного растениям азота даже при применении минеральных удобрений. При его минерализации происходит также высвобождение фосфора.
Кроме того, что органика является источником питательных элементов для растений, она непосредственно влияет на формирование физических свойств почвы (например, способность почвы удерживать воду) и в большой мере определяет такие физико-химические свойства, как объем вещественного обмена и свойства и возможности накопления. Эти свойства играют большую роль не только в питании растений, но и в подавлении вредного эффекта кислотности почвы.

Материал подготовлен специалистами отдела защиты растений и агрохимии ФГБУ «Ростовский референтный центр Россельхознадзора».

Читайте также:  Таблица данных анализа почв

Источник

Сельское хозяйство | UniversityAgro.ru

Агрономия, земледелие, сельское хозяйство

Home » Земледелие » Агрофизические показатели плодородия почв

Популярные статьи

Агрофизические показатели плодородия почв

Агрофизические показатели плодородия почв — комплекс свойств почвы, характеризующих гранулометрический, минералогический состав, структуру, плотность, порозность, воздухо- и влагоемкость, а также агротехнологические параметры почв.

Агрофизические показатели плодородия являются основой создания оптимальных условий водного, воздушного, теплового и питательного режимов для жизни растений.

Агрофизические показатели, за исключением гранулометрического и минералогического составов, отличаются своей динамичностью в течение вегетационного периода, затрудняя их воспроизводство.

Навигация

Гранулометрический состав почв

Твердая фаза почвы — смесь механических фракций: минеральных, органический и органо-минеральных. Минеральные почвы содержат преимущественно минеральные механические частицы с разными размерами, формами, химическим и минералогическим составом.

Гранулометрический состав — относительное содержание в почве механических фракций. Является фактором плодородия пахотных почв, влияющий на продуктивную способность.

Частицы механической фракции принято подразделять на:

  • больше 1 мм в диаметре — скелет почвы;
  • меньше 1 мм — мелкозем, подразделяемый также на:
    • частицы более 0,01 мм — физический песок;
    • частицы менее 0,01 мм — физическая глина.

В зависимости от соотношения физических песка и глины, почвы делятся на:

  • песчаные;
  • супесчаные;
  • суглинистые (легкие, средние, тяжелые);
  • глинистые (легкие, средние, тяжелые).

В зависимости от сопротивления при обработке, почвы подразделяются на:

  • легкие (песчаные и супесчаные);
  • средние (легко- и среднесуглинистые);
  • тяжелые (тяжелосуглинистые и глинистые).

Химический состав меняется в зависимости от гранулометрического состава. С уменьшением дисперсности частиц резко увеличивается содержание кислорода и уменьшается содержание железа, кальция, магния, алюминия, калия и натрия.

Гранулометрический состав влияет на:

  1. Поглотительные (сорбционные) свойства: чем больше в почве тонкодисперсных частиц, и соответственно, чем выше удельная их поверхность, тем выше емкость поглощения, влагоемкость, гигроскопичность, пластичность, липкость.
  2. Плотность почв: с увеличение доли физического песка плотность уменьшается. Оптимальной для большинства культур считается плотность 1,0-1,3 г/см 3 .
  3. Структурообразование: фракция частиц размером менее 0,001 мм характеризуется высокой коагуляционной и поглотительной способностью, вследствие чего накапливает наибольшее количество гумуса и зольных элементов питания, являясь ценнейшей составляющей рыхлых почв.
  4. Наступление физической спелости, то есть способности почвы к крошению на мелкие комки при определенной влажности. Почвы тяжелого гранулометрического состава поспевают позже легкого.
  5. Пластичность определяется содержанием физической глины. С увеличением доли физической глины предел пластичности расширяется.
  6. Твердость. Высокая твердость повышает сопротивление почвы рабочим органам почвообрабатывающих машин и затрудняет рост проростков и корней растений.
  7. Липкость — технологическое свойство почвы. Увеличивается при большом содержании физической глины, ухудшая качество обработки.

Наиболее благоприятное сочетание агрофизических, агрохимических и биологических показателей плодородия отмечается в почвах среднего гранулометрического состава. Влияние гранулометрического состава на плодородие может сильно варьировать в зависимости от других показателей. Например, для дерново-подзолистых почв, сформировавшихся в зоне достаточного или избыточного увлажнения, оптимальным является легкий гранулометрический состав, тогда как наиболее высокое плодородие черноземов, наблюдается на почвах тяжелого гранулометрического состава.

Гранулометрический и минералогический составы не претерпевают существенных изменений при длительном сельскохозяйственном использовании земель, что позволяет выстраивать эффективную модель плодородия, опирающуюся на определенный диапазон изменений свойств почвы. Гранулометрический состав не требует воспроизводства, за исключением защищенного грунта и небольших участков, где его возможно изменить внесением песка или глины.

Генетические свойства почв и их гранулометрический состав определяют потенциальную урожайность сельскохозяйственных культур.

Источник

Сельское хозяйство | UniversityAgro.ru

Агрономия, земледелие, сельское хозяйство

Home » Агрохимия » Агрохимические показатели плодородия почв

Популярные статьи

Агрохимические показатели плодородия почв

Агрохимические показатели плодородия почв — комплекс свойств, характеризующих способность почвы обеспечивать растения элементами питания и оптимальный питательный режим.

Питательный режим почв

Поступление питательных веществ происходит из почвенного раствора, который находится в постоянном равновесии с твердой фазой почвы. Скорость протекания этого процесса очень высокая и зависит от концентрации веществ. Вследствие чего, состав почвенного раствора высокодинамичен.

На содержание доступных форм питательных элементов влияет их валовый запас в почве. Почвенная микрофлора, особенно обитающая в прикорневой зоне (ризосфере) оказывает существенное влияние на перевод валовых запасов в доступные формы.

Состав почвы

Состав почвы во многом определяет агрохимические свойства почвы. Состав принято делить на три фазы:

  • газовую, или газообразную, фазу;
  • жидкую фазу, или почвенный раствор;
  • твердую фазу, подразделяющуюся на минеральную часть и органическую часть (органическое вещество почвы).

Содержание в почве и доступность азота

Источники поступления азота и его трансформация в почве

Естественными источниками поступления азота являются: деятельность азотфиксирующих свободноживущих и клубеньковых бактерий и поступление с атмосферными осадками.

Процесс азотфиксации осуществляется свободноживущими в почве анаэробными бактериями Clostridium pasterianum, аэробными Azotobacter croococcum и клубеньковыми, живущими в симбиозе на корневой системе бобовых растений, Rhizobium. На их жизнедеятельность и эффективность азотфиксации влияют обеспеченность углеводами, фосфором, кальцием и другими элементами, реакция почвенной среды, температура, влага. Накапливают 5-15 кг азота на 1 га в течение года. Способностью азотфиксации обладают также некоторые водоросли и грибы, находящиеся в симбиозе с растениями.

Бактерии группы Azotobacter хорошо развиваются на аэрируемых окультуренных, хорошо прогретых, нейтральных почвах, содержащих фосфор и кальций. При благоприятных условиях накапливает до 30 кг азота на 1 га.

Штаммы и расы бактерий группы Rhizobium характерны для каждого вида бобовых растений. Эффективность азотфиксации зависит от вида растения, агротехники, почвы и ряда других условий. При оптимальных условиях эти бактерии могут накапливать в симбиозе с: люцерной — 250-300 (до 500) кг азота на 1 га, люпином — 160-170 (до 400), клевером — 150-160 (до 250), соей — 100, викой, горохом, фасолью — 70-80 кг азота на 1 га. На их активность положительно влияет внесение органических и фосфорных удобрений и известкование почвы.

Читайте также:  Почва учебник 3 класса

Введение в севооборот бобовых культур способствует увеличению запасов азота в почве.

С атмосферными осадками ежегодно в виде аммиака и нитратов, образующихся под действием грозовых разрядов, поступает 2-11 кг азота на 1 га.

Естественные источники азота представляют практический интерес, но их количество значительно меньше выносимого с урожаем количества азота. Поэтому для воспроизводства почвенных запасов азота требуется внесение органических и минеральных удобрений.

Важную роль в обеспечении растений азотом играют запасы гумуса, в которых содержится около 5% азота. На долю минеральных форм азота приходится около 1-3%. По данным И.В. Тюрина, запасы гумуса в метровом слое почвы на 1 га, составляют: сероземы — 50 т, светло-каштановые — 100, темно-каштановые и южные черноземы — 200-250, обыкновенные черноземы — 400-500, мощные черноземы — 800, выщелоченные черноземы — 500-600, серые лесостепные — 150-300, дерново-подзолистые — 80-120 т. На пахотный слой приходится наибольшая доля гумуса, который обогащен микрофлорой и из которой поступает основная часть минерализованного азота для питания растений.

Аммонификация — микробиологический процесс трансформации азота органического вещества в аммонийные соединения. Аммонийные соли окисляются в результате жизнедеятельности нитрифицирующих бактерий (Nitrosomonas и Nitrobacter) в нитраты и нитриты. Для нормальной жизнедеятельности этих групп бактерий требуется обеспечение оптимальных условий: температуры 25-32 °С, достаточного количества кислорода и воды, кислотности почвы, близкой к нейтральной. Это достигается путем рыхления почвы, применения органических удобрений и известкования кислых почв. Проведение этих приемов позволяет активизировать процессы трансформации азота из органического вещества и сократить его потери. Нарушение этих требований приводит к противоположному эффекту — переходу азотных соединений в газообразные аммиак и азот, то есть активизирует процессы денитрификации.

Другим приемом регулирования баланса азота в почве является применение бактериальных препаратов (ризоторфин).

Потери азота

Содержание азота в минеральной форме очень динамично и зависит от активности микрофлоры почвы, влажности, фазы развития растений.

Потери азота складываются из:

  • иммобилизации, то есть поглощение азота микрофлорой почвы;
  • выщелачивания — вымывание азота, преимущественно нитратных форм в грунтовые воды;
  • улетучивание в виде аммиака в атмосферу;
  • фиксация аммонийных форм почвой или необменной поглощение.

Процесс иммобилизации протекает особенно интенсивно при внесении органических удобрений с широким соотношением углерода и азота — 20-25:1. Плазма микробов содержит значительно большее количество азота (10:1), вследствие чего потребление азота микрофлорой происходит за счет органического вещества и минеральных запасов почвы. Что ухудшает азотное питание культурных растений.

В целях компенсации влияния иммобилизации азота микроорганизмами, при запашке соломы или других растительных остатков богатых целлюлозой перед посевом последующих культур добавляют дополнительно около 1 % минерального азота.

Иммобилизация азота может иметь положительное значение на легких почвах с достаточным увлажнением, благодаря закреплению подвижных форм азота в условиях сильной их вымываемости. В дальнейшем, при разложение остатков микроорганизмов, часть закрепленного азота связывается гумусовыми соединениями, другая часть переходит в минеральные формы.

Вымывание подвижных форм азота, преимущественно нитратов, особенно актуально на легких по гранулометрическому составу почвах с низким уровнем органического вещества в условиях достаточного, избыточного увлажнения и орошения. Культуры сплошного посева снижают этот эффект благодаря интенсивному поглощению азота, тогда как в паровых полях эффект вымывания усиливается.

Потери азота в виде газообразных веществ происходят вследствие денитрификации, то есть восстановления нитратного азота до аммиака и газообразного азота в результате деятельности денитрифицирующих микроорганизмов. Деятельность денитрификатор активизируется анаэробными условиями, когда микробы вынуждены использовать для дыхания кислород, находящийся в нитратной форме, восстанавливая азот до свободной формы. Процесс денитрификации стимулируется создание анаэробных условий, щелочной реакцией среды, избыточным содержанием органического вещества с высоким содержанием глюкозы и клетчатки, высокой влажностью почвы.

Другим путем потери азота в виде газообразных форм (диоксида и монооксида азота) является разложение азотистой кислоты при кислотности почвы 6 и ниже.

Суммарные потери азота могут достигать 50%. При разложении 1 т гумуса образуется 50 кг/га азота, однако часть его теряется в атмосферу в виде газообразного аммиака, улетучивающегося в атмосферу. Особенно это актуально при несоблюдении технологии хранения и применения навоза, навозной жижи и других органических удобрений, при этом потери достигают 30-40%.

Существенную часть азота потребляют сорные растения, причем это количество может превосходить потребление культурными.

Фиксация азота почвой

Часть азота может поглощаться некоторыми минералами из группы гидрослюд. В увлажненном состоянии кристаллическая решетка этих минералов обменно поглощает аммонийный азот, но при подсыхании связывает его, делая малодоступным для растений и микрофлоры.

По данным А.В. Петербургского и В.Н. Кудеярова, в пахотном слое содержится от 130 до 350 кг/га фиксированного азота в зависимости от типа и разновидности почвы. Верхний слой содержит 2-7% фиксированного аммония от общего количества, в подпочве его доля повышается до 30-35%. Объясняется это снижением содержания гумуса в глубоких слоях, а следовательно, и азота в органическом веществе.

На способность почв необменно связывать аммоний влияет вид глинистых минералов, температуры среды, содержание гумуса, реакции почвенного раствора, микробиологическая активность, влажность. Фиксация аммония возрастает с увеличением температуры, рН (максимально на солонцах), содержания гумуса (химическое связывание). На связывание азота влияет содержание глинистых минералов с трехслойной кристаллической решеткой, прежде всего вермикулита.

Фиксированный аммоний может вытесняться обратно в почву при определенных условиях, например, введении в кристаллическую решетку катионов кальция, магния, натрия, становясь доступным для растений.

Читайте также:  Выращивание ягнят козьим молоком

Содержание в почве и доступность фосфора

Cодержание фосфора (Р2О5) в почвах составляет от 0,01% для бедных песчаных почв до 0,20% для мощных высокогумусных. В верхних слоя почвы сосредоточено большее количество Р2О5, что связано с его накоплением в зоне отмирания основной массы корней. С глубиной почвы количество Р2О5 уменьшается. Фосфор присутствует в органической и минеральной формах.

Органические фосфаты входят в состав гумуса, при разложении которого он становится доступным растениям.

Некоторые растения усваивают простые фосфорорганические соединения, благодаря их разложению ферментом фосфатазой, выделяющемуся корневой системой. К таким растениям относятся горох, бобы, кукуруза и другие культуры.

Минеральные формы представлены солями кальция, преобладающие в нейтральных и щелочных почвах, фосфатами оксидов железа и алюминия — в кислых. Кальциевые фосфаты более растворимы, а следовательно, более доступны растениям, чем соли алюминия и железа.

Основным источником фосфор для питания растений являются соли ортофосфорной (Н3РО4) и метафосфорной (НРО3) кислот. Фосфаты одновалентных металлов, в силу их наибольшей растворимости, наиболее доступны. Однозамещенные (дигидроортофосфаты) кальция и магния менее растворимы, но также хорошо доступными для поглощения. Метафосфаты малорастворимы в воде.

Двухзамещенные соли кальция и магния (гидроортофосфаты) малорастворимы в воде, но хорошо растворимы в растворах слабых кислот, что делает их также доступными для растений, за счет создания корневой системой в ризосфере слабокислой реакции.

Ортофосфаты двух- и трехвалентных металлов нерастворимы в воде, поэтому для большинства растений недоступны. Наиболее приспособленными к усваиванию труднодоступных форм фосфора относятся люпин, гречиха, горчица, люцерна и клевер. В меньшей степени это свойство проявляют горох, донник, эспарцет, конопля, рожь и кукуруза (Э. Рюбензам и К.Рауэ, 1960).

В отличие от азота, из-за слабой подвижности, отсутствуют естественные пути потерь фосфора, равно, как и естественные источники пополнения.

Оптимальным уровнем обеспеченности фосфором в подвижных формах для большинства культур принято считать: для серых лесных и дерново-подзолистых почв (по Кирсанову) — 150-250 мг/кг почвы, для черноземов (по Мачигину) — 45-60 мг/га.

Регулирование содержания фосфора в почве осуществляют главным образом внесением органических и фосфорных удобрений. Для увеличения содержания фосфора в почве на 1 мг требуется в зависимости от гранулометрического состава и типа почвы от 40 до 120 кг P2O5/га.

Содержание в почве и доступность калия

Валовое содержание калия часто превышает содержание азота и фосфора, и определяется гранулометрическим составом. Особенно богаты калием глинистые и суглинистые почвы, где содержание достигает 2-3%. Песчаные, супесчаные и торфяные почвы бедны калием — до 0,1%.

Однако, валовое содержания калия в виду особенностей обменных реакций, не означает достаточного обеспечения им растений, так как только около 1% его валового содержания доступно для растений. Поэтому характеристикой обеспеченности калием является его количество в подвижных формах.

По доступности для растений все соединения калия в почве разделяют на пять групп:

  1. Калий, входящий в состав почвенных минералов алюмосиликатов. Труднодоступная форма калия. Однако некоторое минералы (мусковит, биотит и нефелин) способны трансформировать в доступные форму некоторую часть калия под действием углекислого газа и некоторых органических кислот, выделяющихся корнями растений. Скорость переход калия из необменных в обменные формы зависит от типа почв. Для дерново-подзолистых почв она составляет 15-30 кг/га в год, для выщелоченных черноземов — около 60 кг/га.
  2. Поглощенный, или адсорбционно-связанный почвенными коллоидами, калий является основным источником питания растений. Содержание в почве может быть от 50 до 300 мг на 1 кг почвы. В процессе вегетации растения используют только часть обменного калия, что определяется свойствами почвы, биологическими особенностями растений, погодными условиями и т.д.
  3. Водорастворимые формы калия — наиболее доступная форма. Составляют 10-20% (около 1% по данным Э. Рюбензама и К. Рауэ) обменного калия. По данным МСХА в неудобренной дерново-подзолистой почве в течение весенне-летнего периода содержание водорастворимых форм калия составляло 1,5-5 мг/кг почвы. Он образуется в результате химического и биологического воздействия на минералы. Частично переходит в водорастворимую форму из обменного состояния в результате вытеснения из почвенного поглощающего комплекса, а также от удобрений.
  4. Биогенно связанный калий, то есть входящий в состав биомассы почвенных бактерий, растительных остатков и биоты. Его доля может достигать, например, в дерново-подзолистых почвах 40 кг К2О на 1 га. В доступную форму переходит только после отмирания и минерализации остатков.
  5. Калий, фиксированный почвой. Калий может закрепляться в минеральной части почвы в необменном состоянии. Процесс протекает наиболее активно в условиях переменного смачивания и подсыхания почвы и преобладает в почвах тяжелого гранулометрического состава, содержащих глинистые минералы монтмориллонит и гидрослюды, которым характерна внутрикристаллическая адсорбция катионов, в отличие от каолинита.

Закрепление калия в необменную форму интенсифицируется в щелочной среде, преобладает в солонцах. Черноземы фиксируют калий в большей степени, чем дерново-подзолистые почвы.

Почвы обладают определенным пределом фиксации калия из удобрений: для дерново-подзолистых он редко превышает 200 кг/га, для черноземов может достигать 300-700 кг К2О на 1 га. Использование калийных удобрений позволяет достичь полного насыщения емкости фиксации калия.

Оптимальным содержанием обменного калия в почве, при котором наблюдается максимальная урожайность культур, составляет для дерново-подзолистых и серых лесных почв — 170-225 кг/га.

В основных подтипах черноземов оптимальным содержанием подвижного калия в зависимости от почвы, культуры и метода определения составляет по Чирикову от 130 до 200 мг/кг, по Мачигину — до 400 мг/кг.

Источник

Adblock
detector