На нашем сайте вы найдете полезные советы о том, как повысить плодородие почвы на вашем участке.
Меню
Основные агрохимические показатели почвы
Агрохимический анализ. Обоснование и интерпретация
Агрохимический анализ почв проводят для того, чтобы [2]:
Определить, достаточно ли в почве доступных питательных веществ для растений;
Следить за изменением свойств почвы, которые так или иначе влияют на рост и развитие растений;
Оценить характер и определить особенности взаимодействия почвы с применяемыми удобрениями и поступающими из атмосферы веществами;
Рассчитать количество удобрений, которое необходимо внести в почву.
Что мы делаем при анализе и почему именно это?
Мы определяем основные свойства почвы, которые тем или иным образом могут сказаться на росте и развитии растений. Одним из важнейших показателей, определяемых при агрохимическом анализе, является реакция среды (рН). Почему важно контролировать рН?
В основном наибольшие урожаи сельскохозяйственных растений получают при слабокислой или нейтральной реакции среды, но очень часто почва становится более кислой и это препятствует получению высоких урожаев. [12]
Реакция среды воздействует на способность растений поглощать из почвы питательные элементы. При более низких рН она уменьшается, а иногда даже приводит к потере питательных элементов из корней растений [12];
рН сказывается на миграции и аккумуляции веществ в почве [3], в том числе токсичных [6];
Микробиологическая активность почвы тоже зависит от реакции среды [3];
Помимо этого, рН влияет на катионообменную ёмкость почв [4] – максимальное количество катионов, которое может быть удержано почвой в обменном состоянии при заданных условиях [1] и потенциально доступно растениям.
Поэтому при агрохимическом анализе мы определяем рН водной вытяжки из почвы. Но он позволяет судить только о степени кислотности или щёлочности и не даёт количественного представления о содержании кислот и оснований из-за высокой буферности почв. Однако, например, содержание кислотных компонентов может увеличиваться, а рН оставаться практически неизменным. В связи с этим помимо рН водной вытяжки мы определяем потенциальную кислотность — рН солевой вытяжки [8].
Кроме реакции среды важны так же и сами питательные элементы. Растения больше всего нуждаются в следующих из них:
Азот — один из наиболее распространённых элементов в природе, тем не менее растениям часто не хватает азота, так как растения могут усваивать только определённые формы соединений азота (в основном аммонийную и нитратную формы) [3]. В то же время азот является незаменимым элементом в растении, входя в состав белков, ДНК, многих жизненно важных органических веществ. При недостатке азота нарушается процесс фотосинтеза из-за разрушения хлорофилла, возможно высыхание и отмирание частей растений, поэтому обеспечение азотом — одна из важнейших проблем при выращивании сельскохозяйственных культур. В связи с этим для оценки доступного для растений азота мы определяем содержание аммонийного и нитратного азота в почве.
Фосфор тоже жизненно необходим растениям и также входит в состав многих органических соединений. Кроме того, он участвует в энергетическом обмене клеток. Но подвижные формы фосфора во многих почвах находятся в дефиците [4], что приводит к снижению активности ферментов, контролирующих клеточный метаболизм, и веществ, участвующих в синтезе РНК, белков и делении клеток. Соответственно, при недостатке фосфора рост растений замедляется, что, естественно, не может не сказаться на урожае [10]. Поэтому очень важно определять содержание подвижных форм фосфора в почве.
Калий является важнейшим элементом питания растений, он входит в состав цитоплазмы клетки, в значительной степени определяет её свойства и поэтому влияет практически на все процессы в клетке. Калий участвует в поглощении и транспорте воды, открывании и закрывании устьиц. Также при калийном голодании нарушается структура митохондрий и хлоропластов, что в свою очередь оказывает влияние на фотосинтез и дыхание [10]. Поэтому достаточное содержание калия в почве повышает устойчивость растений к воздействию низких и высоких температур, сопротивляемость растений болезням, а также сокращает сроки созревания растений [12]. Растениям доступны только подвижные формы калия, поэтому именно их мы и определяем.
Органическое вещество почвы является важным показателем её плодородия. Оно состоит из ещё не успевших разложиться органических остатков и уже претерпевших изменения органических веществ, называемых гумусом. Гумус способствует накоплению и удержанию питательных для растений веществ, которые при его разложении переходят в почвенный раствор и могут потребляться растениями [3]. Количество гумуса в почве определяют через количество органического углерода в почве.
Как должно быть в идеале и в каких диапазонах могут колебаться указанные параметры?
Данные показатели могут различаться для разных типов почв, и для разных сельскохозяйственных культур могут быть оптимальными разные диапазоны значений, тем не менее в среднем плодородие почвы можно оценить следующим образом:
Таблица 1. Оценка потенциального плодородия почв по содержанию гумуса и доступных для растений фосфора, калия и азота.
Уровень содержания
Подвижный фосфор Р2O5, млн -1 *
Обменный калий К2O, млн -1 *
Нитратный азот N — NO3, млн -1 **
Аммонийный азот N-NH3+, N-NH4, млн -1 **
Содержание гумуса (С орг*1,724), % от массы почвы***
Очень высокий
Более 250
Более 250
–
–
Более 10
Высокий
250–150
250–170
Более 20
Более 40
6–10
Повышенный
150–100
170–120
–
–
–
Средний
100–50
120–80
15–20
20–40
4–6
Низкий
50–25
80–40
10–15
10–20
2–4
Очень низкий
Менее 25
Менее 7
Менее 10
Менее 10
Менее 2
* — по Г. В. Мотузовой и О.С. Безугловой, 2007 (по методу Кирсанова);
** — по Г. П. Гамзикову, 1981;
*** — по Л. А. Гришиной и Д. С. Орлову, 1978.
Таблица 2. Градация кислотности (щёлочности) почв по величине рН водной и солевой вытяжек [11].
Характеристика почвы
рНН2О
Характеристика почвы
рНKCl
Сильнокислые
3,0–4,5
Сильнокислые
5,6
Слабощелочные
7,0–7,5
Щелочные
7,5–8,0
Сильнощелочные
>8,5
Что делать, если что-то не в норме?
Одним из основных приёмов повышения плодородия почв является внесение удобрений. В таблице 3 представлены некоторые из них.
Таблица 3. Вещества, добавляемые в почву для улучшения её свойств [7].
Навоз, торф, различные растительные компосты, сапропель, зелёное удобрение (сидераты)
При недостатке в почве азота, фосфора и калия применяют комплексные удобрения, содержащие в своём составе сразу несколько питательных элементов. Например, это аммонизированный суперфосфат, аммофос, диаммофос, калийная селитра, нитрофос и нитроаммофос, нитрофоска и нитроаммофоска, карбоаммофос и карбоаммофоска, жидкие комплексные удобрения. Преимущество их заключается в том, что при внесении удобрений в крупных масштабах снижаются затраты на транспортировку смешивание, хранение и внесение удобрений. Из недостатков комплексных удобрений выделяют то, что соотношение элементов питания в них изменяется слабо и при внесении их в почву может получиться так, что одних элементов попадёт в почву больше, чем нужно, тогда как других окажется недостаточно [7].
Существуют также бактериальные удобрения, содержащие специальные бактерии, которые улучшают питание растений. Их применяют только при выращивании бобовых растений и для каждого вида подбирают разные штаммы бактерий [7].
Какое же удобрение лучше?
Таблица 4. Сравнение органических, минеральных и биологических удобрений [7].
Органическое
Минеральное
Биологическое
Содержание питательных элементов
Все необходимые элементы
Некоторые элементы, определяемые типом удобрения
Нет
Форма элементов питания
Недоступна для растений, но при разложении органического вещества постепенно выделяются доступные питательные вещества
Доступная для растений
Не содержит элементов питания, но способствует усвоению растениями питательных веществ
Скорость действия
Медленно (3–4 года)
Быстро
Медленно (3–5 лет)
Наличие микроорганизмов
Да
Нет
Да
Повышение качества почвы
Да
Нет
Да
Специфичность для определённого вида растения
Нет
Да
Да
Внося удобрение надо помнить, что его избыток так же плохо сказывается на растениях, как и недостаток. Необходимо рассчитывать количество вносимого удобрения исходя из свойств почвы и произрастающих сельскохозяйственных культур. Для того, чтобы правильно подобрать удобрение и рассчитать его дозу, нужно обратиться в аккредитованную лабораторию, где специалисты проведут анализ почвы согласно установленным ГОСТам и определят указанные выше параметры (рН, аммонийный и нитратный азот, подвижный фосфор, обменный калий и углерод органического вещества).
Список литературы:
ГОСТ 27593-88. Почвы. Термины и определения // Охрана природы. Почвы / Сборник. Государственные стандарты. М: ИПК Изд-во стандартов, 1998.
Е. П. Дурынина, В. С. Егоров Агрохимический анализ почв, растений, удобрений. М: Изд-во МГУ, 1998г., 113 с
Кауричев И.С., Гречин И.П., Почвоведение. Москва: Колос, 1969, 543 с.
Ковда В.А., Розанов Б.Г. Почвоведение. Часть 1. Почва и почвообразование. М.: Высшая школа, 1988. 400 с.
Мотузова Г.В., Безуглова О.С. Экологический мониторинг почв: учебник/ Г.В.Мотузова, О.С.Безуглова. М.: Академический Проект: Гаудеамус, 2007, 237 с.
Мотузова Г. В., Карпова Е. А., Химическое загрязнение биосферы и его экологические последствия. М: МГУ, 2013, 304 с.
Никляев В. С. Основы технологии сельскохозяйственного производства. Земледелие и растениеводство. М.: Былина, 2000, 555 с.
Орлов Д. С., Садовникова Л. К., Лозановская И. Н., Экология и охрана биосферы при химическом загрязнении. М.: Высш. шк., 2002, 334 с.
Орлов Д.С., Бирюкова О.Н., Розанова М.С. Дополнительные показатели гумусного состояния почв и их генетических горизонтов // Почвоведение. 2004. № 8. С. 918-926)
Полевой В. В. Физиология растений. М: Высшая школа, 1989, 464 с.
Прожорина Т. И, Затулей Е. Д, Химический анализ почв. Часть 2. Издтельско-полиграфический центр ВГУ, 30 с.
Соколова Т. А. Калийное состояние почв, методы его оценки и пути оптимизации. М: МГУ. 1987, 47 с.
Источник
Агрохимическая характеристика основных типов почв
Дерново-подзолистые почвы имеют кислую реакцию, значительную обменную кислотность (1—2 мэкв на 100 г), SO—90% величины которой приходится на обменный Аl, а также гидролитическую кислотность (3—6 мэкв на 100 г), низкую емкость поглощения (5—15 мэкв) и степень насыщенности основаниями (30—70%). Большая часть этих почв нуждается в известковании.
Для дерново-подзолистых почв характерно низкое содержание гумуса, общего азота и фосфора и резкое снижение их количества с глубиной профиля. Агрохимические свойства этих почв сильно варьируют в зависимости от механического состава и степени окультуренности (табл. 1).
Большинство дерново-подзолистых почв характеризуется сравнительно низким содержанием усвояемых (минеральных) форм азота и подвижного фосфора, а песчаные и супесчаные почвы — также и калия.
С повышением степени окультуренности почв (при систематическом применении органических и минеральных удобрений, известковании и т.д.) снижается кислотность, увеличивается содержание гумуса и общего азота, подвижного фосфора и обменного калия, повышается их плодородие.
Дерново-подзолистые почвы обычно бедны элементами питания, но достаточно увлажнены, применение органических и минеральных удобрений дает на них высокий эффект. Из минеральных удобрений наиболее эффективны азотные, а на слабоокультуренных почвах также фосфорные удобрения. На песчаных и супесчаных почвах эффективно применение калийных, а также магнийсодержащих удобрений.
Серые лесные почвы в зависимости от мощности гумусового горизонта, содержания гумуса и выраженности признаков оподзоливания подразделяют на светло-серые, серые и темно-серые, отличающиеся по агрохимическим свойствам (табл. 2).
Таблица №2 Агрохимические свойства серых лесных почв
Подтип
Мощность гумусового горизонта, см
Содержание гумуса, %
рН солевой вытяжки
Светло серые
15—25
1,6—3,4
4,8—5,4
Серые
25—30
2,2—4,7
5,2—5,7
Темно-серые
40—60
3,5—7,0
5,5—6,0
Продолжение табл. 2
Подтип
Гидролитическая кислотность мекв на 100г.
Сумма обменных оснований мекв на 100г
V, %
Подвижный фосфор мг на 100 г почвы
Подвижный калий мг на 100 г почвы
Светло серые
2,3-3,8
10—18
72—82
6
10
Серые
2,9-3,5
14—25
76—87
8
13
Темно серые
2,3-5,4
20-36
80-86
12
15
Oт светло-серых к серым и темно-серым почвам увеличиваются мощность гумусового горизонта, содержание гумуса, сумма обменных оснований и степень насыщенности основаниями, уменьшается кислотность. Серые лесные почвы обычно имеют невысокое содержание усвояемых соединений азота, подвижного фосфора и калия, но оно может сильно колебаться в зависимости от степени окультуренности и предшествующей удобренности почвы.
Необходимо систематическое применение органических и минеральных удобрений, а на светло-серых почвах с кислой реакцией, кроме того, и известкование. Эффективность минеральных удобрений наиболее высокая в западных провинциях зоны и несколько ниже в центральном и особенно восточном районах.
В повышении урожаев сельскохозяйственных культур на серых лесных почвах ведущая роль принадлежит азотным удобрениям, на втором месте по эффективности стоят фосфорные удобрения, слабее действуют калийные, применение которых, однако, необходимо под картофель, сахарную свеклу и для получения высоких урожаев зерновых культур.
Черноземы по сравнению с другими почвами характеризуются более высоким естественным плодородием, имеют мощный гумусовый горизонт, значительно больше содержат гумуca и общею азота в пакетном горизонте с постепенным снижением их по профилю (табл. 3).
Валовой запас гумуса и азота в слое 0—20 см составляет соответственно 60—220 и 3—15 т на 1 га, а в метровом слое — в 3—4 раза больше. Общее содержание фосфора (P2O5) колеблется от 0,1 до 0,3%, а валовой запас его 2—4,5 т на 1 га. Реакция этих почв близка к нейтральной или слабощелочная (рН 6—8), обменная кислотность, как правило, отсутствует, гидролитическая кислотность колеблется от 0 до 4 мэкв на 100 г. Черноземы имеют высокую емкость поглощения и степень насыщенности основаниями. У типичного чернозема наибольшая мощность гумусового горизонта, более высокое содержание гумуса, общего азота, фосфора и валовые их запасы (соответственно 120—220, 7—15 и 3,5—4,5 т на 1 га), а также емкость поглощения. К северу — у выщелоченного чернозема и к югу — у обыкновенного и особенно южного черноземов эти показатели снижаются. Реакция почвы слабокислая у выщелоченного чернозема и слабощелочная у обыкновенного и южного, у которых также выше степень насыщенности основаниями, и незначительная или вовсе отсутствует гидролитическая кислотность. У выщелоченных черноземов гидролитическая кислотность достигает часто 3—5 мэкв на 100 г. Все подтипы черноземов богаты калием, общее содержание его равно 2,5—3%, а валовой запас 45—60 т на 1 га. Несмотря на высокое потенциальное плодородие черноземов, обеспеченность их усвояемыми формами азота и подвижным фосфором, особенно старопахотных и слабо удобрявшихся почв, очень часто невысокая. Поэтому на этих почвах наблюдается высокая эффективность фосфорных, а при более благоприятных условиях увлажнения — и азотных удобрений. На старопахотных и слабоудобрявшихся черноземах уменьшаются по сравнению с целинными запасы общего и обменного калия, поэтому на таких почвах, особенно под калиелюбивые культуры (сахарная свекла, картофель, подсолнечник и др.), эффективно применение калийных удобрений (вместе с азотными и фосфорными). Минеральные удобрения эффективнее в более увлажненных западных районах Черноземной зоны, в восточных районах (параллельно с ухудшением условий увлажнения) эффективность их снижается.
Таблица №3 Агрохимические свойства черноземов
Подтип
Мощность гумусового горизонта , см
Содержание гумуса,%
рН подпой вытяжки
Гидролитическая кислотность мэкв на 100г.
Емкость поглощення мэкв на 100г
V %
Выщелоченный
80—150
6—9
5,5—6,5
2—4
45—55
85-95
Типичный
100—180
8—12
6,5—7
0,5—3
50—60
90-98
Обыкновенный
60—140
5—8
7-8
0—1
40—50
95-100
Южный
40—80
3—6
7—8
0—0,5
25—35
98-100
Каштановые почвы делятся на темно-каштановые, каштановые и светло-каштановые, которые отличаются по агрохимическим свойствам (табл. 4).
Темно-каштановые почвы — переходные от черноземных к каштановым. Мощность гумусового горизонта достигает 45 см с постепенным уменьшением содержания гумуса по профилю. Карбонатный горизонт залегает на глубине 45—50 см. Реакция почвы слабощелочная, легкорастворимых солей мало и залегают они глубже 2—2,5 м.
Таблица №4 Агрохимические свойства каштановых почв
Подтип
Мощность гумусового горизонта, см
Содержание гумуса, %
Общий N
Общий фосфор, %
рН солевой вытяжки
Сумма обменных катионов, мэкв на 100 г.
Темно-каштановая
35—45
4-5
0,2—0,3
0,1—0,2
7—7,2
30—35
Каштановая
30—40
3—4
0,15—0,20
1,1—0,2
7,2—7,5
20—13
Светло-каштановая
25—30
2—3
0,10—0,15
0,08—0,15
7,4—8
12-15
У каштановых и светло-каштановых почв, которые распространены ц более засушливых районах сухих степей, меньше мощность гумусового горизонта, ниже содержание гумуса и общего азота; более резкое снижение их с глубиной, карбонатный горизонт залегает выше (на глубине 30—40 и 25—30 см), реакция слабощелочная и щелочная (рН 7,2—8). Среди светло-каштановых почв много солонцеватых и сильносолонцеватых разностей. Для каштановых почв характерна различная степень засоления, но солевой горизонт обычно расположен на глубине 1 м и ниже. Из верхнего горизонта водорастворимые соли вымыты, содержание их (главным образом бикарбонатов Са и Mg) небольшое (сотые доли %). В солевом горизонте из водорастворимых солей преобладают сульфаты и хлориды. Каштановые почвы богаты калием, но имеют низкую обеспеченность подвижными формами азота и фосфора. Однако эффективность минеральных удобрений на этих почвах из-за недостатка влаги обычно низкая. В условиях богарного земледелия рекомендуется внесение небольших доз фосфорных удобрений в рядки при посеве зерновых культур. При орошении эффективность азотных и фосфорных удобрений резко повышается, но калийные удобрения малоэффективны. Для повышения плодородия солонцовых почв и солонцов рекомендуется применение гипса.
Сероземы подразделяются на три подтипа: светлые, типичные (обыкновенные) и темные. Земледелие на этих почвах ведется при орошении (без орошения возможно лишь на темных сероземах).
Сероземы характеризуются высокой карбонатностью, малогумусностью и низким содержанием азота. Содержание гумуса в слое 0—20 см у светлых сероземов 1—1,5%, типичных— 1,5—3, темных —до 4—5%, а общее содержание азота соответственно 0,07—0,12%, 0,1—0,2, 0,35—0,40%. Валовой запас гумуса в слое 0—20 см колеблется от 30—40 у светлых сероземов до 120—150 т на 1 га у темных, а запас азота от 2—4 до 8—10 т на 1 га.
Общее содержание фосфора варьирует от 0,08 до 0,2%, а запас его от 2 до 6 т на 1 га, калия — соответственно 2,5—3% и 75—90 т на 1 га, т. е. валовой запас фосфора и калия в этих почвах весьма значительный.
Сероземы имеют слабощелочную реакцию (рН 7,2—8), относительно низкую емкость поглощения (9—30 мэкв у светлых, 12—15 — у типичных и 18—20 мэкв на 100 г у темных сероземов). Из суммы обменно-поглощенных катионов 80—90% составляет Са 2+ , 10—15% Mg 2+ и 5— 8% К + и Na + . Для орошаемых сероземов характерна высокая биологическая активность и нитрификационная способность, но образующиеся нитраты интенсивно мигрируют (при поливах) по профилю почвы. Для повышения плодородия этих почв крайне важно систематическое применение органических и минеральных удобрений.
Из минеральных удобрений на первом месте по эффективности стоят азотные, а затем фосфорные, которые весьма эффективны при низком содержании в почве подвижного фосфора. Калием сероземы обеспечены лучше, чем азотом и фосфором. Однако на длительно орошаемых и используемых для возделывания хлопчатника и других культур площадях возникает потребность и в калийных удобрениях, особенно при систематическом внесении высоких норм азотных и фосфорных удобрений.