Меню

Основы химического анализа почв щеглов громовик горбунова

Химический анализ почв

В учебнике рассмотрены особенности почвы как объекта химического анализа и показатели химических свойств почв и химических почвенных процессов, теоретически обоснованы приемы исследования химического состояния почв и интерпретации полученных результатов. Охарактеризованы показатели и методы определения элементного, вещественного, группового и фракционного состава почв, показатели и способы оценки подвижности соединений химических элементов в почвах, показатели и методы оценки кислотно-основных и катионообмен-ных свойств почв.

Для студентов почвоведов, экологов, агрохимиков, для аспирантов и специалистов, работающих в области исследования химического состояния почв.

редметом изучения курса «Химический анализ почв» являются принципы и методы оценки химических свойств почв и химических почвенных процессов. Химический анализ почв является одним из наиболее важных средств познания природы, генезиса и плодородия почв. Классификация и диагностика почв, оценка их мелиоративных особенностей и плодородия, оценка пригодности почв для использования в сельском хозяйстве, инженерно-строительных, коммунальных и иных целях в той или иной мере базируются на результатах химического анализа почв.Благодаря большому значению химического анализа в изучении почв ему на всех этапах развития почвоведения уделялось много внимания. Разработка теоретических основ химического анализа и химической характеристики почв связана с именами А.Н. Сабанина, И.Н. Антипова-Каратаева, И.В.Тюрина, Н.П. Ремезова, В.А.Чернова, В.В.Пономаревой, А.В. Соколова, Д.Л. Аскинази, Н.И. Горбунова, Е.В. Ари-нушкиной и многих других исследователей. Их именами называют разработанные ими методы анализа. Например, гумус в почвах определяют по Тюрину, обменные водород и алюминий — по Соколову, степень подвижности фосфатов — по Карпинскому и пр.С именами Н.Г. Зырина, Д.Н. Иванова, А.И. Обухова и других исследователей связана инструментализация химического анализа почв. Она позволила ускорить темпы исследований, сделать их более объективными, расширить круг решаемых задач.Но безусловно особый вклад в развитие теоретических основ и методов исследования почв внес К. К. Гедройц. В 1909 г. К. К. Гедройц опубликовал краткое руководство по химическому анализу почв, в 1923 г. вышла в свет его книга «Химический анализ почв», которая неоднократно переиздавалась и не утратила своего значения до наших дней. В ней не только систематизированы и теоретически обоснованы методы анализа почв, но оценено влияние различных факторов на результаты анализов, рассмотрены основы их интерпретации.Современный этап развития химического анализа почв имеет свои особенности. В настоящее время большое внимание уделяется теоретическому обоснованию методов исследования химического состояния почв и совершенствованию приемов интерпретации полученных результатов. Разработка этих вопросов во многом основывается на применении аппарата химической термодинамики, и в частности теории химических равновесий, к исследованию почв, т.е. базируется на тех законах, которые студенты изучают в курсах аналитической и физической химии.Использование термодинамических уравнений химических и физико-химических равновесий и их констант позволяет моделировать почвенные процессы, способствует выявлению механизмов их проявления, тем самым позволяя более объективно интерпретировать результаты исследования почвенных систем.В Московском университете первый курс лекций по химическому анализу почв читал проф. Е.П. Троицкий, затем проф. Е.В. Аринушкина. В 1949-1952 гг. Е.В. Аринушкиной выпущены учебные пособия по химическому анализу почв, которые в 1961 — 1970 гг. переиздавались. Будучи заведующим кафедрой химии почв, много внимания развитию и инстру-ментализации практикума по химическому анализу почв уделял проф. Н.Г. Зырин.Автор данного учебника много лет читает лекции и руководит работой практикума по химическому анализу почв для студентов факультета почвоведения МГУ. На основе прочитанного курса были написаны «Лекции по химическому анализу почв» (1978) и настоящий учебник.В основу построения учебника положена система показателей химических свойств почв. В каждой из его глав рассматриваются показатели и методы оценки одного из свойств почв. При изложении материала предполагалось, что читателю известны основы теории классической аналитической химии и методов количественного анализа — химических и инструментальных. В учебнике рассматриваются лишь те аспекты теории методов, которые необходимы для понимания особенностей анализа почв.Автор признателен сотрудникам практикума по химическому анализу почв кандидатам биол. наук Т.А. Рудаковой, О.А. Амельянчик, Г.И. Глебовой, О.В. Лопухиной за помощь в работе, а также А.В. Горобцу за помощь в подготовке рукописи к печати. Автор благодарен доктору сельскохозяйственных наук Ю.Н. Водяницкому за полезные советы.Автор глубоко признателен рецензентам — доценту О. Г. Растворовой и другим сотрудникам кафедры почвоведения и географии почв Санкт-Петербургского государственного университета, руководимой профессором Б.Ф. Апариным, и зав. отделом генезиса и мелиорации засоленных почв Почвенного института им. В.В.Докучаева доктору сельскохозяйственных наук Н.Б. Хитрову за проявленный интерес к учебнику и ценные замечания по его содержанию.Автор будет благодарен за любые замечания, сделанные по содержанию учебника.

Читайте также:  Биотермическое обезвреживание навоза это

Источник

Агрохимический анализ. Обоснование и интерпретация

Агрохимический анализ почв проводят для того, чтобы [2]:

  1. Определить, достаточно ли в почве доступных питательных веществ для растений;
  2. Следить за изменением свойств почвы, которые так или иначе влияют на рост и развитие растений;
  3. Оценить характер и определить особенности взаимодействия почвы с применяемыми удобрениями и поступающими из атмосферы веществами;
  4. Рассчитать количество удобрений, которое необходимо внести в почву.

Что мы делаем при анализе и почему именно это?

Мы определяем основные свойства почвы, которые тем или иным образом могут сказаться на росте и развитии растений. Одним из важнейших показателей, определяемых при агрохимическом анализе, является реакция среды (рН). Почему важно контролировать рН?

  1. В основном наибольшие урожаи сельскохозяйственных растений получают при слабокислой или нейтральной реакции среды, но очень часто почва становится более кислой и это препятствует получению высоких урожаев. [12]
  2. Реакция среды воздействует на способность растений поглощать из почвы питательные элементы. При более низких рН она уменьшается, а иногда даже приводит к потере питательных элементов из корней растений [12];
  3. рН сказывается на миграции и аккумуляции веществ в почве [3], в том числе токсичных [6];
  4. Микробиологическая активность почвы тоже зависит от реакции среды [3];
  5. Помимо этого, рН влияет на катионообменную ёмкость почв [4] – максимальное количество катионов, которое может быть удержано почвой в обменном состоянии при заданных условиях [1] и потенциально доступно растениям.

Поэтому при агрохимическом анализе мы определяем рН водной вытяжки из почвы. Но он позволяет судить только о степени кислотности или щёлочности и не даёт количественного представления о содержании кислот и оснований из-за высокой буферности почв. Однако, например, содержание кислотных компонентов может увеличиваться, а рН оставаться практически неизменным. В связи с этим помимо рН водной вытяжки мы определяем потенциальную кислотность — рН солевой вытяжки [8].

Кроме реакции среды важны так же и сами питательные элементы. Растения больше всего нуждаются в следующих из них:

Азот — один из наиболее распространённых элементов в природе, тем не менее растениям часто не хватает азота, так как растения могут усваивать только определённые формы соединений азота (в основном аммонийную и нитратную формы) [3]. В то же время азот является незаменимым элементом в растении, входя в состав белков, ДНК, многих жизненно важных органических веществ. При недостатке азота нарушается процесс фотосинтеза из-за разрушения хлорофилла, возможно высыхание и отмирание частей растений, поэтому обеспечение азотом — одна из важнейших проблем при выращивании сельскохозяйственных культур. В связи с этим для оценки доступного для растений азота мы определяем содержание аммонийного и нитратного азота в почве.

Читайте также:  Выращивание душистого горошка через рассаду

Фосфор тоже жизненно необходим растениям и также входит в состав многих органических соединений. Кроме того, он участвует в энергетическом обмене клеток. Но подвижные формы фосфора во многих почвах находятся в дефиците [4], что приводит к снижению активности ферментов, контролирующих клеточный метаболизм, и веществ, участвующих в синтезе РНК, белков и делении клеток. Соответственно, при недостатке фосфора рост растений замедляется, что, естественно, не может не сказаться на урожае [10]. Поэтому очень важно определять содержание подвижных форм фосфора в почве.

Калий является важнейшим элементом питания растений, он входит в состав цитоплазмы клетки, в значительной степени определяет её свойства и поэтому влияет практически на все процессы в клетке. Калий участвует в поглощении и транспорте воды, открывании и закрывании устьиц. Также при калийном голодании нарушается структура митохондрий и хлоропластов, что в свою очередь оказывает влияние на фотосинтез и дыхание [10]. Поэтому достаточное содержание калия в почве повышает устойчивость растений к воздействию низких и высоких температур, сопротивляемость растений болезням, а также сокращает сроки созревания растений [12]. Растениям доступны только подвижные формы калия, поэтому именно их мы и определяем.

Органическое вещество почвы является важным показателем её плодородия. Оно состоит из ещё не успевших разложиться органических остатков и уже претерпевших изменения органических веществ, называемых гумусом. Гумус способствует накоплению и удержанию питательных для растений веществ, которые при его разложении переходят в почвенный раствор и могут потребляться растениями [3]. Количество гумуса в почве определяют через количество органического углерода в почве.

Как должно быть в идеале и в каких диапазонах могут колебаться указанные параметры?

Данные показатели могут различаться для разных типов почв, и для разных сельскохозяйственных культур могут быть оптимальными разные диапазоны значений, тем не менее в среднем плодородие почвы можно оценить следующим образом:

Таблица 1. Оценка потенциального плодородия почв по содержанию гумуса и доступных для растений фосфора, калия и азота.

Уровень содержания Подвижный фосфор Р2O5, млн -1 * Обменный калий
К2O, млн -1 *
Нитратный азот
N — NO3, млн -1 **
Аммонийный азот
N-NH3+, N-NH4, млн -1 **
Содержание
гумуса
(С орг*1,724),
% от массы
почвы***
Очень высокий Более 250 Более 250 Более 10
Высокий 250–150 250–170 Более 20 Более 40 6–10
Повышенный 150–100 170–120
Средний 100–50 120–80 15–20 20–40 4–6
Низкий 50–25 80–40 10–15 10–20 2–4
Очень низкий Менее 25 Менее 7 Менее 10 Менее 10 Менее 2

* — по Г. В. Мотузовой и О.С. Безугловой, 2007 (по методу Кирсанова);

** — по Г. П. Гамзикову, 1981;

*** — по Л. А. Гришиной и Д. С. Орлову, 1978.

Таблица 2. Градация кислотности (щёлочности) почв по величине рН водной и солевой вытяжек [11].

Характеристика почвы рНН2О Характеристика почвы рНKCl
Сильнокислые 3,0–4,5 Сильнокислые 5,6
Слабощелочные 7,0–7,5
Щелочные 7,5–8,0
Сильнощелочные >8,5

Что делать, если что-то не в норме?

Одним из основных приёмов повышения плодородия почв является внесение удобрений. В таблице 3 представлены некоторые из них.

Таблица 3. Вещества, добавляемые в почву для улучшения её свойств [7].

Какой показатель выходит за рамки нормального Что нужно добавлять в почву
рН Известь (если реакция кислая), гипс (если реакция щелочная)
Азот Натриевая, кальциевая, аммиачная селитра, сульфат аммония, аммиак жидкий, карбомид-аммиачная селитра, аммиачная вода, хлористый аммоний
Фосфор Суперфосфат простой гранулированный, суперфосфат двойной гранулированный, фосфоритная мука, преципитат, мартеновский фосфатшлак, обесфторенный фосфат
Калий Калий хлористый, калийная соль смешанная, сильвинит, сульфат калия-магния (калимагнезия), цементная калийная пыль, калий сернокислый, сульфат калия, полигалит, каинит, жидкий гумат калия
Органический углерод Навоз, торф, различные растительные компосты, сапропель, зелёное удобрение (сидераты)

При недостатке в почве азота, фосфора и калия применяют комплексные удобрения, содержащие в своём составе сразу несколько питательных элементов. Например, это аммонизированный суперфосфат, аммофос, диаммофос, калийная селитра, нитрофос и нитроаммофос, нитрофоска и нитроаммофоска, карбоаммофос и карбоаммофоска, жидкие комплексные удобрения. Преимущество их заключается в том, что при внесении удобрений в крупных масштабах снижаются затраты на транспортировку смешивание, хранение и внесение удобрений. Из недостатков комплексных удобрений выделяют то, что соотношение элементов питания в них изменяется слабо и при внесении их в почву может получиться так, что одних элементов попадёт в почву больше, чем нужно, тогда как других окажется недостаточно [7].

Существуют также бактериальные удобрения, содержащие специальные бактерии, которые улучшают питание растений. Их применяют только при выращивании бобовых растений и для каждого вида подбирают разные штаммы бактерий [7].

Какое же удобрение лучше?

Таблица 4. Сравнение органических, минеральных и биологических удобрений [7].

Органическое Минеральное Биологическое
Содержание питательных элементов Все необходимые элементы Некоторые элементы, определяемые типом удобрения Нет
Форма элементов питания Недоступна для растений, но при разложении органического вещества постепенно выделяются доступные питательные вещества Доступная для растений Не содержит элементов питания, но способствует усвоению растениями питательных веществ
Скорость действия Медленно (3–4 года) Быстро Медленно (3–5 лет) Наличие микроорганизмов Да Нет Да Повышение качества почвы Да Нет Да Специфичность для определённого вида растения Нет Да Да

Внося удобрение надо помнить, что его избыток так же плохо сказывается на растениях, как и недостаток. Необходимо рассчитывать количество вносимого удобрения исходя из свойств почвы и произрастающих сельскохозяйственных культур. Для того, чтобы правильно подобрать удобрение и рассчитать его дозу, нужно обратиться в аккредитованную лабораторию, где специалисты проведут анализ почвы согласно установленным ГОСТам и определят указанные выше параметры (рН, аммонийный и нитратный азот, подвижный фосфор, обменный калий и углерод органического вещества).

Список литературы:

  1. ГОСТ 27593-88. Почвы. Термины и определения // Охрана природы. Почвы / Сборник. Государственные стандарты. М: ИПК Изд-во стандартов, 1998.
  2. Е. П. Дурынина, В. С. Егоров Агрохимический анализ почв, растений, удобрений. М: Изд-во МГУ, 1998г., 113 с
  3. Кауричев И.С., Гречин И.П., Почвоведение. Москва: Колос, 1969, 543 с.
  4. Ковда В.А., Розанов Б.Г. Почвоведение. Часть 1. Почва и почвообразование. М.: Высшая школа, 1988. 400 с.
  5. Мотузова Г.В., Безуглова О.С. Экологический мониторинг почв: учебник/ Г.В.Мотузова, О.С.Безуглова. М.: Академический Проект: Гаудеамус, 2007, 237 с.
  6. Мотузова Г. В., Карпова Е. А., Химическое загрязнение биосферы и его экологические последствия. М: МГУ, 2013, 304 с.
  7. Никляев В. С. Основы технологии сельскохозяйственного производства. Земледелие и растениеводство. М.: Былина, 2000, 555 с.
  8. Орлов Д. С., Садовникова Л. К., Лозановская И. Н., Экология и охрана биосферы при химическом загрязнении. М.: Высш. шк., 2002, 334 с.
  9. Орлов Д.С., Бирюкова О.Н., Розанова М.С. Дополнительные показатели гумусного состояния почв и их генетических горизонтов // Почвоведение. 2004. № 8. С. 918-926)
  10. Полевой В. В. Физиология растений. М: Высшая школа, 1989, 464 с.
  11. Прожорина Т. И, Затулей Е. Д, Химический анализ почв. Часть 2. Издтельско-полиграфический центр ВГУ, 30 с.
  12. Соколова Т. А. Калийное состояние почв, методы его оценки и пути оптимизации. М: МГУ. 1987, 47 с.

Источник

Adblock
detector