1 Область применения
Настоящий стандарт распространяется на почвы сельскохозяйственных угодий (далее — почвы) и устанавливает общие требования к определению удельной активности 137 Cs методом гамма-спектрометрии с использованием сцинтилляционного или полупроводникового детекторов в составе измерительного тракта гамма-спектрометра.
Диапазон измерения удельной активности 137 Cs от 2 до 10 4 Бк/кг.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике
ГОСТ Р 8.563-2009 Государственная система обеспечения единства измерений. Методики (методы)измерений
ГОСТ Р 8.594-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение радиационного контроля. Основные положения
ГОСТ Р 53091-2008 (ИСО 10381-3:2001) Качество почвы. Отбор проб. Часть 3. Руководство по безопасности
ГОСТ Р 53123-2008 (ИСО 10381-5:2005) Качество почвы. Отбор проб. Часть 5. Руководство по изучению городских и промышленных участков на предмет загрязнения почвы
ГОСТ 12.3.019-80 Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности
ГОСТ 17.4.3.01-83 Охрана природы. Почвы. Общие требования к отбору проб
ГОСТ 17.4.4.02-84 Охрана природы. Почва. Методы отбора и подготовки проб для химического, бактериологического и гельминтологического анализа
ГОСТ 23923-89 Средства измерений удельной активности радионуклида. Общие технические требования и методы испытаний
ГОСТ 26652-85 Блоки детектирования сцинтилляционные. Общие технические требования и методы испытаний
ГОСТ 27173-86 Блоки и устройства детектирования ионизирующих излучений спектрометрические. Общие технические условия
ГОСТ 27451-87 Средства измерений ионизирующих излучений. Общие технические условия
Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины, определения и сокращения
3.1 В настоящем стандарте применены термины по ГОСТ 17.4.3.01, [1] — [2], а также следующие термины с соответствующими определениями:
3.1.1 активность радионуклида, Бк: Отношение числа самопроизвольных превращений ядер данного радионуклида, происходящих за интервал времени к этому интервалу времени.
3.1.2 удельная (объемная) активность, Бк/кг(дм 3 ): Отношение активности радионуклида в пробе к массе (объему) данной пробы.
3.1.3 проба: Часть вещества, предназначенная для определения активности радионуклида.
3.1.4 точечная проба: Минимальное количество анализируемого вещества, отобранное из одного места за один прием в определенный момент или промежуток времени, предназначенное для составления объединенной пробы.
3.1.5 объединенная проба: Представительная проба, полученная тщательным перемешиванием нескольких точечных проб.
3.1.6 счетный образец: Определенное количество вещества, полученного из объединенной пробы согласно методике приготовления счетных образцов и предназначенное для измерения активности радионуклида в условиях, предусмотренных аттестованной методикой измерений.
3.1.7 нативный счетный образец: Счетный образец, получаемый без каких-либо химических операций с веществом пробы.
3.1.8 геометрия измерения: Понятие, характеризующее взаимное расположение исследуемого объекта и блока детектирования спектрометра.
3.1.9 неопределенность измерений: Характеристика точности измерений величины с помощью средства измерения и методики измерений, определяющая разброс возможных при данном измерении значений, которые могли бы быть обоснованно приписаны измеряемой величине; оценивается как интервал вокруг измеренного значения величины, внутри которого с вероятностью 95 % (Р = 0,95) находится ее истинное значение (расширенная неопределенность).
3.1.10 класс работ: Характеристика работ с открытыми источниками ионизирующего излучения по степени потенциальной опасности для персонала, определяющая требования по радиационной безопасности в зависимости от радиотоксичности и активности нуклидов.
3.2 В стандарте использованы следующие сокращения:
СИ — средство измерения;
ЛРК — лаборатория радиационного контроля.
4 Сущность метода
4.1 Метод гамма-спектрометрии является основным для определения активности 137 Cs в почве. Сущность метода состоит в регистрации гамма-квантов, испускаемых ядрами 137 Cs. Содержание 137 Cs определяют по гамма-излучению дочернего радионуклида 137 m Ва, имеющему энергию излучения 661,7 кэВ.
4.2 Алгоритмы градуировки гамма-спектрометров, процедура набора энергетического спектра, а также алгоритмы обработки набранного спектра и расчета содержания 137 Cs в счетном образце представлены в документации на конкретный спектрометр и реализованы в компьютерных программах математического обеспечения данного спектрометра в соответствии с методикой обработки измерительной информации.
5 Средства измерений, вспомогательные устройства и оборудование
5.1 Гамма-спектрометр с полупроводниковым или сцинтилляционным детектором 1 в соответствии с ГОСТ 23923, ГОСТ 26652, ГОСТ 27173, ГОСТ 27451.
1 Технические характеристики на конкретное СИ установлены в технической документации.
5.2 Источники градуировочные и контрольные в соответствующих рабочих геометриях.
5.3 Кюветы измерительные.
5.4 Весы среднего или высокого класса точности в зависимости от массы анализируемой пробы.
5.5 Дозиметры типа СРП-98, СРП-88Н, ДКС-96 и т.д. с пределом допускаемой основной погрешности 30 % по ГОСТ 27451.
5.6 Средства измерений, контрольные и градуировочные источники, применяемые в сфере государственного регулирования обеспечения единства измерений при определении 137 Cs в почве, должны пройти процедуру утверждения типа СИ или типа стандартных образцов, а методики (методы) измерений, используемые в сфере государственного регулирования обеспечения единства измерений, подлежат аттестации согласно ГОСТ Р 8.563.
5.7 Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками не хуже вышеуказанных.
5.8 Средство измерения подлежит поверке по ГОСТ Р 8.594.
6 Подготовка к выполнению измерений
Перед отбором проб почвы на местности целесообразно выполнить дозиметрический контроль по мощности дозы гамма-излучения с помощью дозиметра по 6.4.
Выбор участка местности для отбора проб проводят согласно [3].
6.2 Подготовка проб к анализу
6.2.1 Подготовка проб к анализу выполняют по ГОСТ 17.4.4.02.
6.2.2 При выборе измерительной кюветы учитывают массу анализируемой пробы, ожидаемый уровень радиоактивного загрязнения, время и погрешность измерения. Измерительная кювета должна соответствовать одной из аттестованных геометрий, перечисленных в свидетельстве о поверке спектрометра.
6.2.3 Перед измерениями необходимо убедиться в радиационной чистоте кюветы. Пустую кювету размещают в измерительной области детектора и проводят контроль фона.
6.2.4 Объем заполнения должен соответствовать номинальному значению кюветы с погрешностью ±10 %. Массу счетного образца определяют взвешиванием до и после заполнения кюветы с погрешностью ±2 % [4].
6.2.5 Исходя из чувствительности гамма-спектрометров используют метод измерения нативных счетных образцов.
7 Выполнение измерений
7.1 Подготовку средства измерения к работе и выполнение измерений проводят согласно руководству по эксплуатации конкретного СИ и методике измерений, аттестованной по ГОСТ Р 8.563.
7.2 Определение необходимого времени измерения счетного образца
В соответствии с [4] время измерения счетного образца определяют исходя из требований, предъявляемых к результатам измерений:
— измерение активности счетного образца с заданной погрешностью;
— измерение счетного образца с заданным нижним пределом.
7.3 Оценка неопределенности измерений
Неопределенность измерений для полупроводниковых и сцинтилляционных детекторов составляет от 10 % до 25 % [ 4 ] и от 10 % до 50 % [5], соответственно, при доверительной вероятности Р = 0,95.
8 Обработка и оформление результатов измерений
8.1 Обработку результатов проводят в соответствии с алгоритмом, реализованным в программном обеспечении спектрометра и аттестованной методикой измерения.
8.2 Выходным результатом является удельная (Бк/кг) или объемная (Бк/дм 3 ) активность 137 Cs, с соответствующей неопределенностью измерения при доверительной вероятности 95 % (Р = 0,95).
8.3 По окончании измерений оформляют протокол испытаний. Протокол должен содержать следующую информацию:
— сведения о лаборатории, проводившей измерения;
— номер и дату оформления протокола;
— сведения об объекте измерения;
— наименование методики отбора пробы или регламента проведения измерения;
— наименование методики выполнения измерения;
— наименование средства измерения, данные о поверке СИ;
— результаты измерения, с указанием даты выполнения и единиц измерений;
— погрешность результатов измерения;
— должность, ФИО, подпись лица проводившего измерения и оформившего протокол;
— должность, ФИО, подпись руководителя ЛРК.
9 Контроль качества результатов измерений
9.1 Контроль качества результатов измерений в лаборатории предусматривает проверку стабильности результатов измерений с учетом требований ГОСТ Р ИСО 5725-6.
9.2 Пределы повторяемости, внутрилабораторной (промежуточной) прецизионности и воспроизводимости, показатели точности измерений (в качестве показателя точности методики измерений могут быть использованы характеристики погрешности измерений, показатели неопределенности измерений) устанавливают по результатам аттестации методики измерений в соответствии с ГОСТ Р 8.563.
10 Требования безопасности и квалификация персонала
10.1 Общие требования безопасности при эксплуатации СИ — по ГОСТ 12.3.019, [6] и инструкциям по эксплуатации на применяемые СИ.
10.2 Рабочее помещение оборудуют соответственно классу работ с открытыми источниками ионизирующего излучения по [1] — [ 2 ].
10.3 При выполнении измерений соблюдают требования радиационной безопасности [1] — [2].
10.4 К работе на гамма-спектрометре допускают персонал, прошедший курс обучения по работе с данным средством измерения, получивший практические навыки по использованию метода выполнения измерений, а также прошедший соответствующее обучение с целью ознакомления с правовыми и нормативными документами.
Библиография
Нормы радиационной безопасности (НРБ-99/2009)
Ионизирующее излучение, радиационная безопасность. Основные правила обеспечения радиационной безопасности
Методические указания по проведению локального мониторинга на реперных участках, М., 1996
Рекомендации. Активность радионуклидов в объемных образцах. Методика выполнения измерений на гамма-спектрометре. Государственный комитет СССР по управлению качеством продукции и стандартам, 1991
Методика измерения активности радионуклидов с использованием сцинтилляционного гамма-спектрометра с программным обеспечением «Прогресс». ГНМЦ «ВНИИФТРИ», 2003
Правила технической эксплуатации электроустановок потребителей. Энергосервис, М., 2003
Ключевые слова: почвы, радионуклиды, 137 Cs, гамма-спектрометрия, средства измерений, активность, методика измерений, качество результатов измерений, гамма-спектрометр, отбор проб
Источник
Радиологические исследования почв и грунтов
Вопросы радиологической безопасности в настоящее время стоят достаточно остро, в связи с чем проведение радиологических исследований является обязательным при мониторинге экологического состояния земель сельскохозяйственного назначения, территорий населенных пунктов и промышленных зон, при проведении инженерных изысканий для строительства в целях выявления очагов радиационного загрязнения и предотвращения отрицательного воздействия радиации на здоровье человека.
Специалисты нашего Центра проводят радиологические исследования с использованием современных радиометров и спектрометров.
При радиационном обследовании территории выполняются следующие радиологические исследования:
- дозиметрический контроль, при котором проводится гамма-съемка местности;
- фоновых значений мощности эквивалентной дозы территории;
- выявляются участки радиоактивного загрязнения, их масштабы и состав загрязнения;
- осуществляется отбор образцов проб радиационного контроля с объектов и последующее лабораторное спектрометрическое измерение содержания (удельной активности) радионуклидов в почвах и грунтах;
- измеряется плотность потока радона с поверхности грунтов, в котлованах и в воздухе зданий, находящихся на участке строительства, и оценивается потенциальная радоноопасность обследуемой территории/здания.
На основании полученных данных делаются выводы о соответствии или несоответствии исследованных показателей требованиям нормативных документов (НРБ-99/2009, ОСПОРБ-99/2010 и др.).
Что такое радиологическое загрязнение?
Радиоактивность — это самопроизвольное превращение (распад) атомных ядер некоторых химических элементов, приводящее к изменению их атомного номера и массового числа. Такие химические элементы называют радионуклидами. Атомы одного и того же элемента, имеющие разные массовые числа называют изотопами.
Естественные радиоактивные вещества широко распространены в природе. Их излучение создаёт естественный радиационный фон внешнего облучения. Естественная радиоактивность почв обусловлена в основном содержанием в них урана, радия, тория и изотопа калия-40. Обычно в почвах они находятся в сильно рассеянном состоянии и распределяются относительно равномерно.
Активностью называется мера количества радиоактивного вещества, выражаемая числом радиоактивных превращений в единицу времени. В качестве единицы активности принято одно ядерное превращение в секунду. В системе СИ эта единица называется беккерель (Бк). До последнего времени широко использовалась специальная (внесистемная) единица активности — кюри (Ки): 1 Кu = 3,7•1010 ядерных превращений в секунду. Соотношение между указанными единицами активности: 1 Бк
2,7•1011 Кu. При радиологическом контроле природных объектов определяют удельную активность, которая характеризует активность радионуклида в единице массы или объёма образца.
Развитие жизни на Земле всегда происходило в присутствии естественного радиоактивного фона. Источниками его являются космическое излучение и естественные радионуклиды (ЕРН). почвы В результате деятельности человека в биосфере появились искусственные радионуклиды, увеличилось количество естественных радионуклидов, извлекаемых из недр Земли с нефтью, углем, газом, рудами. Проблема глобального загрязнения почв и грунтов радиоактивными изотопами некоторых элементов возникла с развитием атомной промышленности и испытаниями ядерного и термоядерного оружия.
Особенно значительное радиоактивное загрязнение почв, грунтов и биосферы в целом происходит при аварийных ситуациях.
Радиоактивное загрязнение почв ландшафтов и экосистем в настоящее время обусловливают в основном два радионуклида: цезий-137 и стронций-90. Поэтому в объектах исследований определяют валовое содержание, прежде всего, именно их. В почвах длительных интенсивных агроэкосистем, кроме того, определяют валовое количество калия-40.
Цезий-137 — это бета- и гамма-излучатель с максимальной энергией бета-излучения 1,76 МэВ и Т1/2 = 30,17 года. Большая подвижность цезия-137 определяется тем, что это радиоизотоп щелочного элемента.
Стронций-90 имеет период полураспада 28,1 года и является бета-излучателем с максимальной энергией 0,544 МэВ. Его относят к числу самых биологически подвижных. Закрепление и распределение этого радионуклида в почве в основном определяются закономерностями поведения изотопного носителя — стабильного стронция, а также химического аналога — стабильного кальция.
Калий-40 является бета-излучателем с энергией 1,32 МэВ и Т1/2 = 1,28 •109 лет. В каждом грамме природного калия содержится 27 Бк калия-40. В процессе хозяйственной деятельности человека потоки этого радионуклида в компонентах биосферы возрастают — в естественный круговорот дополнительно вовлекается 6,2•1016 Бк калия-40. При средней норме внесения калийных удобрений 60 кг/га в почву поступает калия-40 1,35•106 Бк/кг (Алексахин и др., 1992).
Особого внимания требуют наиболее опасные загрязнители агроэкосистем — долгоживущие радионуклиды – цезий -137 и стронций-90. Их доля в смеси продуктов деления с течением времени возрастает. Включаясь в биологическую цепочку «почва — растение — животное — человек» они оказывают поражающее влияние на здоровье людей. «Цезиевый период» будет продолжаться около 300 лет.
Основной критерий, характеризующий степень радиоэкологической безопасности человека, проживающего на загрязненной территории, — среднегодовое значение эффективной дозы. Единицей эффективной дозы является зиверт (Зв). Для оценки общих последствий облучения населения в случае проживания на загрязненной территории используется коллективная эффективная доза, которая представляет собой произведение средней эффективной дозы по группе людей на число индивидуумов в этой группе. Международной комиссией по радиологической медицине рекомендована в качестве предела дозы облучения населения — доза, равная 1 мЗв/год (0,1 бэр/год).
К основным путям облучения человека, которые должны учитываться при оценке реальных эффективных доз, относятся: внешнее облучение от гамма-излучающих радионуклидов в радиоактивном облаке, внешнее облучение от аэрозольных и твердых выпадений, внутреннее облучение по пищевым цепочкам и по ингаляционному пути. Наша лаборатория проводит радиологический анализ почвы по современным стандартам, принимаем заявки по телефону и с сайта.
Критерии радиационной безопасности
Показатели | Экологическое бедствие | Чрезвычайная экологическая ситуация | Относительно удовлетворительная ситуация |
---|---|---|---|
Эффективная доза облучения, мЗв/год | более 10 | 5 — 10 | менее 1 |
Как проводятся радиологические исследования
Определение ЕРН в почве территорий, отводимых под строительство, производится путем гамма-спектрометрического анализа проб. Отбор проб почв и грунтов производится специальными пробоотборниками, а также при бурении инженерно-геологических скважин.
Отбор и обработка проб и определение изотопного состава концентраций радионуклидов должны производиться в лабораториях, аккредитованных на производство данного вида работ.
Маршрутную гамма-съемку территории следует проводить с одновременным использованием поисковых дозиметров-радиометров и дозиметров. Дозиметры-радиометры используются в режиме «Поиск» для обнаружения участков (точек) радиационных аномалий. Дозиметры используются для измерения МЭД в контрольных точках (сетка с шагом не более 10х15 м). Измерения проводятся на высоте 0,1 м над поверхностью грунтов, а также в инженерно-геологических скважинах – гамма-каротаж.
Мощность эквивалентной дозы (МЭД) внешнего гамма-излучения не должна превышать 0,3 мкЗв/час. Участки, на которых фактический уровень МЭД превышает обусловленный естественным гамма-фоном, рассматриваются как аномальные. В зонах выявленных аномалий гамма-фона интервалы между контрольными точками должны последовательно сокращаться до размера, необходимого для оконтуривания зон с уровнем МЭД > 0,3 мкЗв/час.
На таких участках с целью оценки величины годовой эффективной дозы должны быть определены удельные активности техногенных радионуклидов в почве и по согласованию с органами государственного санитарно-эпидемиологического надзора решен вопрос о необходимости проведения дополнительных исследований или дезактивационных мероприятий.
При обнаружении радиационной аномалии с МЭД > 0,3мкЗв/ч и выше необходимо проинформировать специальные службы.
Радоноопасность территории определяется по плотности потока радона с поверхности грунта и его концентрации в воздухе близлежащих уже построенных зданий и сооружений. Измерение плотности потока радона проводится в контрольных точках, расположенных в узлах прямоугольной сетки с шагом, определяемым с учетом потенциальной радоноопасности участка (20х10, 10х15, 50х25), но не менее 10 точек на участок.
Измерение плотности потока радона производится на поверхности почвы, дна котлована или на нижней отметке фундамента здания. Не допускается проведение измерений на поверхности льда и на площадках, залитых водой.
Измерение плотности потока радона производится методом экспонирования в контрольных точках накопительных камер с сорбентом радона, с последующим определением величины потока на радиометрических установках по величине активности бета- или гамма-излучения дочерних продуктов радона, поглощенного сорбентом.
По полученным данным рассчитывается класс требуемой противорадоновой защиты здания.
Результаты радиационно-экологических изысканий оформляются в виде технического отчета.
Отчет включает в себя следующие материалы и данные:
- план участка с указанием МЭД в контрольных точках;
- результаты работ по гамма-съемке, по определению ЕРН в почве, оценке радоноопасности участка;
- заключение о радиационной безопасности данного участка, а при необходимости — рекомендации по повышению уровня безопасности.
Источник