Отбор проб почвы
Точечные пробы отбирают методом конверта по диагонали или другим способом, следя за тем, чтобы каждая проба представляла собой часть почвы, типичной для исследуемых почвенных горизонтов и ключевых участков.
Метод конверта является наиболее распространенным способом отбора смешанных почвенных образцов и чаше всего применяются для исследования почвы гумусового горизонта. При этом из точек контролируемого элементарного участка (или каждой рабочей пробоотборной площадки) берут 5 образцов почвы. Точки должны быть расположены так, чтобы мысленно соединенные прямыми линиями, давали рисунок запечатанного конверта (длина стороны квадрата может составлять от 2 до 5 – 10 м). Обычно при изучении почвы отбирают пробы гумусового горизонта с глубины около 20 см., что соответствует штыку лопаты. Из каждой точки отбирают около 1 кг (по объему около 0,5 л), но не менее 0,5 кг почвы. Почвенные образцы упаковывают в полиэтиленовые или полотняные мешочки и прилагают к ним этикетки (сопроводительные талоны).
Объединенную пробу почвы готовят из точечных проб. При определении в почве поверхностно – распределяющихся веществ (ПАУ, тяжелые металлы, радионуклиды и др.) точечные пробы обычно отбирают с помощью трубчатого пробоотборника послойно на глубине 0,5 и 20 см массой до 0,2 кг. При оценке загрязнения почвы летучими соединениями или веществами с высокой способностью к вертикальной миграции (нитрозоамины) пробы отбирают по всей глубине почвенного профиля в герметично закрывающиеся емкости. При невозможности быстрого анализа на месте пробы хранят в условиях, как правило, описанных в методиках анализа.
Определенные трудности возникают при отборе почвы для радиологических исследований, что связано с перераспределением радионуклидов в ландшафтах после поступления из атмосферы. Для снижения влияния рельефа, вида почв и растительности, а также возможности сравнения данных, отбор образцов должен производиться таким образом, чтобы их радиоактивность характеризовала как можно большую территорию, а места отбора были ограничены участками с горизонтальной поверхностью и минимальным стоком. Кроме того, образцы радиоактивных проб должны отбираться с открытых целинных участков в ненарушенной структурой. На обследуемом участке желательно выполнить предварительную гамма – радиометрическую съемку.
Измерения рекомендуется производить на высоте 1 м от поверхности и не ближе 2 – 5 м от стен строений. Одновременно с радиоактивными образцами почвы отбирают и пробы растительности. При изучении миграции радионуклидов в наземных экосистемах каждого ландшафта выбирают наиболее характерные участки на протяжении всего профиля от водораздела к пониженным элементам рельефа. Для отбора образцов закладывают разрезы размером 70х150 см и глубиной 1 – 2 м (в зависимости от типа почв) и отбирают пробы по горизонтали непрерывно по всему разрезу. Толщина отбираемых для радиометрических анализов слоев обычно не превышает 2 – 5 см.
Специфической процедурой является отбор проб с твердых, гладких и не сорбирующих поверхностей(глина, стекло, кафель, пластмасса, металл, лакокрасочные покрытия и др.). Для этой цели применяют ватно-марлевые или ватные тампоны, смоченные водой или органическим растворителем. Иногда берут мазки или смывы со стен, полов, окон производственных помещений (с площади примерно 0,5 м 2 ), а с поверхности зданий соскабливают внешний слой покрытия толщиной 1 – 2 мм с площади 0,1 – 0,25 м 2 .
№ 8. Молекулярная спектроскопия (фотометрия, спектрофотометрия)
Фотометрия — 1) общая для всех разделов прикладной оптики научная дисциплина, на основании которой производятся количественные измерения энергетических характеристик поля излучения; 2) раздел прикладной физики, занимающийся измерениями света.
Фото́метр — прибор для измерения каких-либо из фотометрических величин.
Виды фотометрических измерений.Основные виды фотометрических измерений таковы: 1) сравнение силы света источников; 2) измерение полного потока от источника света; 3) измерение освещенности в заданной плоскости; 4) измерение яркости в заданном направлении; 5) измерение доли света, пропускаемой частично прозрачными объектами; 6) измерение доли света, отражаемой объектами.
При использовании фотометра осуществляют определённое пространственное ограничение потока излучения и регистрацию его приёмником излучения с заданной спектральной чувствительностью.
Освещённость измеряют люксметрами, яркость — яркомерами, световой поток и световую энергию — с помощью фотометра интегрирующего. Приборы для измерения цвета объекта называют колориметрами.
Спектрометр — оптический прибор, используемый для накопления спектра, его количественного подсчета и последующего анализа с помощью различных аналитических методов. Спектрометры могут различаться по спектральному диапазону, спектральной чувствительности, оптической схеме.
Основное назначение спектрометра — количественная интерпретация получаемого спектра с целью получения аналитических данных. В большинстве случаев аналитические программы сравнивают полученный спектр со спектром вещества, чей состав известен. Различают следующие типы спектрометров: рентгенофлуоресцентный спектрометр (РФА спектрометр), который нашел широкое применение благодаря гибкости, лёгкости калибровки и хорошей точности, искровой оптико-эмиссионный спектрометр, лазерный спектрометр, ИК спектрометр, спектрометр индуктивно-связанной плазмы, атомно-абсорбционный спектрометр, масс-спектрометр, и другие.
Спектрофотометрия (абсорбционная) — физико-химический метод исследования растворов и твёрдых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200-400 нм), видимой (400-760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в спектрофотометрии зависимость интенсивности поглощения падающего света от длины волны. Спектрофотометрия широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы спектрофотометрии — спектрофотометры.
Спектрофотометр (от спектр и фотометр) — прибор для исследования спектрального состава по длинам волн электромагнитных излучений в оптическом диапазоне, нахождения спектральных характеристик излучателей и объектов, взаимодействовавших с излучением, а также для спектрального анализа и фотометрирования.
Спектрофотометры могут работать в различных диапазонах длин волн – от ультрафиолетового до инфракрасного. В зависимости от этого приборы имеют разное назначение.
№9. Устройство и работа концентрационного фотоэлектроколориметра (КФК).
Фотометрические исследования проводят с помощью фотоколориметров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определенным веществом окрашенное соединение. Если раствор сравнения при этом остается бесцветным и, следовательно, не поглощает лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду.
Устройство и принцип действия фотометрических приборов рассмотрим на примере колориметра фотоэлектрического концентрационного КФК-2
Однолучевой фотометр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания 100-5% (D = 0-1,3). Основная абсолютная погрешность измерения пропускания 1%.
Принципиальная оптическая схема фотоколориметра КФК-2 представлена на рис.
Свет от галогенной малогабаритной лампы (1) проходит последовательно через систему линз, теплозащитный (2), нейтральный (3), выбранный цветной (4) светофильтры, кювету с раствором (5), попадает на пластину (6), которая делит световой поток на два: 10% света направляется на фотодиод при измерениях в области спектра 590-540 нм) и 90% — на фотоэлемент (при измерениях в области спектра 315-540 нм).
Фотометр фотоэлектрический КФК-3 предназначен для измерения коэффициентов пропускания и оптической плотности прозрачных жидкостных растворов и прозрачных твердых образцов, а также для измерения скорости изменения оптической плотности вещества и определения концентрации вещества в растворах после предварительной градуировки фотометра.
№10. Эмиссионный и атомно-абсорбционный спектральный анализ.
Атомно-эмиссионным спектральным анализомназывается метод определения химического состава, основанный на изучении атомных спектров вещества, возбуждаемых в горячих источниках света. Спектр — это излучение, разложенное по длинам волн, заключает в себе информацию о качественном и количественном составах анализируемого объекта. Принципиальная схема эмиссионного спектрального анализа сводится к следующему: а) перевод вещества в парообразное состояние; б) возбуждение атомов и ионов; в) разложение испускаемого атомами света в спектр; д) регистрация и расшифровка полученных спектров.
По характерным линиям в спектрах атомов можно идентифицировать элементы, содержащиеся в анализируемом образце (качественный спектральный анализ), а по относительным интенсивностям спектральных линий можно определять концентрации элементов в исследуемом образце (количественный анализ).
Спектральный анализ был разработан в 1859 г. физиком Кирхгофом и химиком Бунзеном. С помощью сконструированного ими прибора, названного спектроскопом, они показали, что каждому виду атомов (элементу) присущ строго определенный, характерный спектр. Они же предложили использовать спектральный метод для качественного анализа проб. Когда ученые обнаружили в спектрах некоторых образцов спектральные линии, которые нельзя было отнести к каким-либо известным элементам, они объяснили наличие этих линий присутствием неизвестных элементов. Так, с помощью нового метода были открыты неизвестные в то время элементы рубидий и цезий. Позднее другие исследователи с помощью спектрального анализа открыли и другие элементы: таллии, индий, галлий, гелий.
Источник
Отбор точечных проб почвы с горизонта
ГОСТ Р 58595-2019
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
___________________________________________________________________
Сравнение ГОСТ Р 58595-2019 с ГОСТ 28168-89 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 2020-01-01
Предисловие
1 РАЗРАБОТАН Федеральным государственным бюджетным научным учреждением «Всероссийский научно-исследовательский институт агрохимии имени Д.Н.Прянишникова» (ФГБНУ «ВНИИ агрохимии»)
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 025 «Качество почв, грунтов и органических удобрений»
4 ВВЕДЕН ВПЕРВЫЕ
Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)
1 Область применения
Настоящий стандарт распространяется на отбор проб пахотных земель, почв сенокосов, лесных питомников и устанавливает методы их отбора при агрохимическом и эколого-токсикологическом обследовании.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 17.4.3.01 Охрана природы (ССОП). Почвы. Общие требования к отбору проб
ГОСТ 17.4.4.02 Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа
ГОСТ 21667 Картография. Термины и определения
ГОСТ 26640 (СТ СЭВ 4472-84) Земли. Термины и определения
ГОСТ 27593 Почвы. Термины и определения
Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.
3 Термины и определения
В настоящем стандарте применены термины по ГОСТ 17.4.3.01, ГОСТ 17.4.4.02, ГОСТ 21667, ГОСТ 27593, а также следующие термины с соответствующими определениями:
3.1 сельскохозяйственное угодье: Земельное угодье, систематически используемое для получения сельскохозяйственной продукции.
3.2 поле: Группа участков (сельскохозяйственных полигонов), используемых для земледелия и имеющих единый севооборот сельскохозяйственных культур.
3.3 сенокос: Сельскохозяйственное угодье, используемое под сенокошение.
3.4 пастбище: Сельскохозяйственное угодье, систематически используемое для выпаса животных.
3.5 пашня: Сельскохозяйственное угодье, систематически обрабатываемое и используемое под посевы сельскохозяйственных культур, включая посевы многолетних трав, а также чистые пары.
3.6 элементарный участок: Локальный участок сельскохозяйственного полигона, являющийся многоугольником произвольной формы, характеризующийся однородными почвенными условиями. Одному элементарному участку соответствует одна проба грунта.
3.7 картосхема отбора почвенных проб: Цифровая модель местности, содержащая сведения об элементарных участках сельскохозяйственных угодий, маркированных в соответствии с внутренними правилами обозначения точек почвенных проб конкретного сельхозпредприятия. Графическое изображение картосхемы содержит векторное описание контуров элементарных участков пашни сельскохозяйственных угодий, точки отбора почвенных проб и пояснительные надписи.
3.8 маршрутный ход: Ходовая профильная линия, которая проходит через все основные элементы рельефа элементарного участка или любой другой единичной площади с целью отбора точечных (единичных) проб в соответствии с критериями приемлемости при выполнении агрохимических, эколого-токсикологических обследований или агроэкологических изысканий.
3.9 точечная (единичная) проба: Проба определенного объема, взятая однократно из почвенного горизонта, слоя.
4 Основные положения
4.1 Отбор проб при агрохимическом и эколого-токсикологическом обследовании почв проводят в течение всего вегетационного периода. На полях, участках сенокосов, пастбищ, лесных питомников, где доза внесенных минеральных удобрений по каждому виду составляла более 90 кг действующего вещества на 1 га, пробы отбирают спустя 2 месяца после внесения удобрений.
4.2 Картосхемой для отбора почвенных проб является план сельскохозяйственных угодий с нанесенными на него элементами внутрихозяйственного землеустройства и границами почвенных контуров.
Примечание — При агрохимическом и эколого-токсикологическом обследовании почв лесных питомников картосхемой для отбора почвенных проб является план питомника с нанесенными на него границами полей и почвенных контуров.
4.3 Масштаб картосхемы отбора почвенных проб должен соответствовать масштабу почвенных карт обследуемой территории.
4.4 После рекогносцировочного осмотра сельскохозяйственных угодий, подлежащих агрохимическому и эколого-токсикологическому обследованию, на картосхему отбора почвенных проб наносят сетку элементарных участков установленного размера.
4.5 Форма элементарного участка по возможности должна приближаться к прямоугольной с отношением сторон не более 1:2.
Для лесных питомников элементарным участком является поле питомника. Каждому элементарному участку присваивают порядковый номер.
4.6 Максимально допустимые размеры элементарных участков на неэродированных и слабоэродированных богарных и орошаемых (по ГОСТ 26640-85) пахотных почвах должны быть не более указанных в таблице 1.
Таблица 1 — Максимально допустимые размеры элементарных участков на неэродированных и слабоэродированных богарных и орошаемых пахотных почвах
Максимально допустимые размеры элементарных участков, га
при ежегодном уровне применения фосфорных удобрений (кг д.в. на 1 га)
Источник