Меню

Перечислите растения при выращивании которых применяются методы генной инженерии

Методы генетической инженерии растений.

Традиционные методы селекции, основанные, главным образом, на половой гибридизации и отборе, позволяют получать новые генотипы растений. Генно-инженерные манипуляции позволяют решать ряд важных задач по повышению устойчивости новых форм, линий, сортов и гибридов сельскохозяйственных растений к патогенам и сокращению продолжительности выведения новых сортов.

Технология рекомбинантных ДНК позволяет выделять гены как про-кариотического, так и эукариотического происхождения, переносить этот ген (или несколько генов) в хромосомы реципиентного растения и обеспечивать его экспрессию. Применение этой технологии делает поиск более целенаправленным и значительно расширяет возможности манипулирования генетическим аппаратом.

Важным преимуществом растений по сравнению с животными является возможность получения целого растения из одной клетки, основанная на свойстве тотипотентности. Результаты генетической инженерии растений во многом зависят от разработки методов культуры тканей, особенно методик регенерации различных растений.

Технология генетической инженерии состоит из следующих основных этапов получения трансгенных растений: 1) выбор гена и его клонирование; 2) подбор генотипа растения-реципиента; 3) введение гена и его экспрессия в геноме растения-реципиента; 4) регенерация трансформированных клеток и отбор трансгенных растений.

Выбор гена и его клонирование.Выбор гена определяется необходимостью передачи растению определенного хозяйственно-полезного признака. В настоящее время для трансформации растений используются в основном гены, определяющие моногенные признаки, такие, как устойчивость к гербицидам и пестицидам, устойчивость к некоторым другим видам стрессов. Большинство генов, определяющих эти признаки, выделены из бактериальных геномов. В последнее время в качестве доноровгенов, определяющих признаки устойчивости растений. Такие гены не могут быть введены в геном растений-реципиентов путем половой гибридизации из-за биологической несовместимости растений, относящихся к разным видам, родам и даже семействам. Еще более сложной является проблема получения признаков, относящихся к группе количественных признаков: качество зерна, устойчивость к засухе, низким и высоким температурам.

Подбор генотипа растения-реципиента. В идеальном вариант в качестве реципиента подбираются растения такого сорта или линии, которые отвечали бы требованиям производства по урожайности, качеству плодов, устойчивости к биотическим и абиотическим стрессам, но имели бы лишь одно отрицательное свойство, например неустойчивость к насекомым. Тогда введение в геном растений этого сорта, например, бактериального гена bt2, экспрессирующего белок прототоксин, вызывающий гибель насекомых, приводил бы к значительному улучшению выбранного сорта. Также выбор генотипа растения-реципиента определяется способностью его клеток к регенерации в целое фертильное растение, так как показано, что это свойство значительно зависит отгенотипа.

Введение гена и его экспрессия в геноме растения-реципиента. Проблема переноса чужеродных генов в геном растений существенно облегчается в связи с обнаружением Ti-плазмид почвенных агробактерий Agrobacterium tumefaciens, позволяющих вводить чужеродные гены в геном двудольных и некоторых однодольных растений. В последнее время довольно широко, особенно для трансформации клеток однодольных растений, используется метод биобаллистической трансформации.

Суть метода заключается в том, что на мельчайшие частички вольфрама, платины или золота, диаметром 0,6-1,2 мкм, напыляется ДНК вектора, содержащего необходимую для трансформирования генную конструкцию. Вольфрамовые, платиновые или золотые частички, несущие ДНК, на целлофановой подложке помещаются внутрь биобаллистической пушки. Каллус или суспензия клеток вносится в чашку Петри с агаризированной средой и помещается под биобаллистическую пушку на расстоянии 10-15 см. В пушке вакуумным насосом уменьшается давление до 0,1 атм. В момент сбрасывания давления вольфрамовые или золотые частички с огромной скоростью выбрасываются из пушки и, разрывая клеточные стенки, входят в цитоплазму и ядро клеток. Обычно клетки, располагающиеся непосредственно по центру, погибают из-за огром­ного количества и давления вольфрамовых или золотых частиц, в то время как в зоне 0,6-1 см от центра будут находиться трансформированные клетки. Далее клетки осторожно переносят на среду для дальнейшего культивирования и регенерации.

Читайте также:  Корневое выращивание ком растений

Важно обеспечить экспрессию чужеродного гена в геноме растения-реципиента и стабильное наследование признака в поколениях. Экспрессия введенного гена зависит от ряда причин, в том числе от места интеграции гена в геном растения, последующего метилирования промоторной области и введенного гена и т.п.

Регенерация трансформированных клеток и отбор трансгенных растений. Регенерация взрослых растений из трансформированных клеток зависит от тотипотентности клеток (способности части клеток или протопластов развиваться в целое растение) и не всегда возможна. Тотипогентность хорошо выражена у клеток двудольных растений, таких как табак, картофель, свекла, соя, рапс, люцерна, томаты, морковь, капуста, некоторые плодовые. У однодольных, особенно злаков, этот признак выражен очень слабо, в связи с чем процесс регенерации клеток в целое растение проходит с большими трудностями. В настоящее время разработаны методы регенерации трансформированных клеток некоторых основных зерновых культур, таких как кукуруза, рис, пшеница, ячмень. Однако необходимо отметить, что с каждым годом методы регенерации разрабатываются для все большего числа растений.

Источник

Методы генетической инженерии растений

Метод кокультивации с агробактериейявляется одним из самых распространённых методов получения трансгенных двудольных растений.

В качестве исходного материала необходимо иметь штамм агробактерии с векторной конструкцией. Вектор должен содержать последовательность гена, который необходимо ввести в геном растения.

В качестве эксплантов для трансформации обычно берут стерильные листовые диски. Однако можно брать и молодые корешки, семядоли, междоузлия.

Экспланты инокулируют жидкой средой, содержащей агробактерию с векторной конструкцией. Время инокуляции подбирается для каждого вида растений индивидуально. При этом происходит заражение клеток раневой поверхности экспланта, и после 24-48 ч. кокультивирования в некоторых клетках происходит встраивание в растительный геном фрагмента Т-ДНК с чужеродным (выбранным) геном.

Такие трансгенные растения будут расти на среде с добавлением селективного агента. Через 2-5 недель на трансформированном экспланте развиваются побеги, которые в дальнейшем отсаживают или переносят в почву.

Методом кокультивации с агробактериями к настоящему времени получены трансгены растения практически всех сельскохозяйственных двудольных растений. Этот метод применим также и для некоторых однодольных (пшеница, кукуруза, рис).

Методы прямого переноса генов в растение

Для прямого переноса генов в растительные клетки очень часто используется трансформация растительных протопластов. При обработке клеточной стенки растения ферментами (целлюлозой, пектиназой) клеточная оболочка разрушается и остаётся один протопласт. Разработаны методы прямой трансформации протопластов с помощью ДНК.

Для трансформации может быть использован практически ДНК-вектор, несущий чужеродный ген. При этом гибридный ген интегрирует в ядерную ДНК растения и экспрессирует, особенно в случае прямой инъекции в ядро протопласта, используя механизмы клеточной рекомбинации. Однако основным недостатком такого метода является крайне низкая частота трансформации.

В настоящее время более 140 видов растений были протрансформированы путём прямого переноса ДНК вектора в протопластные клетки различными методами:

1) Микроинъекции ДНК. Трансформация растительных протопластов с эффективностью не более 10-15%.

2) Электропорация метод основан на том, что импульсы высокого напряжения обратимо увеличивают проницаемость биомембран. Метод состоит в следующем: на растительные протопласты, находящиеся в растворе большой концентрации, содержащем ДНК-векторы, действуют высоковольтным импульсом (напряжение 200-350 В). В результате молекулы ДНК поглощаются клетками через поры в клеточной мембране. После разведения раствора протопласты высеиваются на соответствующую среду для регенерации.

Читайте также:  Перечислить мероприятия по охране почв

3) Упаковка в липосомы. Липосомы – это сферически образования, оболочки которых состоят из фосфолипидов. В настоящее время этот способ трансформации применяется всё реже из-за его технической сложности и низкой трансформирующей активности (0,5- 1%).

4) Метод биобаллистической трансформации. Метод биобаллистики, являясь одним из самых эффективных на сегодняшний день методов трансформации однодольных. Суть метода заключается в том, что на мельчайшие частички вольфрама, платины или золота, напыляется ДНК вектора, содержащего необходимую для трансформации генную конструкцию. Помещают внутрь биобаллистической пушки, суспензия клеток вносится в чашку Петри и помещается под биобаллестическую пушку. В пушке вакуумным насосом уменьшается давление. В момент сбрасывания давления вольфрамовые или золотые частички с огромной скоростью выбрасываются из пушки и, разрывая клеточные стенки, входят в цитоплазму и ядро клеток. Были трансформированы однодольные растения, такие, как кукуруза, рис, пшеница, ячмень.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Генетическая инженерия растений

Генетическая инженерия растений, принадлежащая к так называемым высоким технологиям, вызывает наибольшее количество споров и дискуссий среди различных кругов общественности.

Развитие генетической инженерии растений очень актуально в настоящее время в связи с тем, что число населения мира растет, а количество пахотных земель уменьшается. С помощью генной инженерии можно повысить питательную ценность пищевых продуктов, повысить устойчивость растений к внешним условиям и многое другое. Помимо производства продуктов питания обширными областями применения генетически модифицированных растений являются создание лекарственных средств, обеспечение промышленности сырьем и прочее.

В настоящее время получением и испытанием генетически модифицированных растений занимаются сотни коммерческих фирм во всем мире с совокупным капиталом более ста миллиардов долларов. В 1999 г. трансгенные растения были высажены на общей площади порядка 40 млн. га, что превышает размеры такой страны, как Великобритания. В США генетически модифицированные растения (GM Crops) составляют сейчас около 50% посевов кукурузы и сои и более 30-40% посевов хлопчатника. Это говорит о том, что генно-инженерная биотехнология растений уже стала важной отраслью производства продовольствия и других полезных продуктов, привлекающей значительные людские ресурсы и финансовые потоки. В ближайшие годы ожидается дальнейшее быстрое увеличение площадей, занятых трансгенными формами культурных растений.

Первая волна трансгенных растений, допущенных для практического применения, содержала дополнительные гены устойчивости (к болезням, гербицидам, вредителям, порче при хранении, стрессам).

Нынешний этап развития генетической инженерии растений получил название «метаболическая инженерия». При этом ставится задача не столько улучшить те или иные имеющиеся качества растения, как при традиционной селекции, сколько научить растение производить совершенно новые соединения, используемые в медицине, химическом производстве и других областях. Этими соединениями могут быть, например, особые жирные кислоты, полезные белки с высоким содержанием незаменимых аминокислот, модифицированные полисахариды, съедобные вакцины, антитела, интерфероны и другие «лекарственные» белки, новые полимеры, не засоряющие окружающую среду и многое, многое другое. Использование трансгенных растений позволяет наладить масштабное и дешевое производство таких веществ и тем самым сделать их более доступными для широкого потребления.

Читайте также:  Где взять мицелий для выращивания грибов

Достижения генетической инженерии растений:

1. Улучшение качества запасных белков

2. Создание гербицидоустойчивых растений

3. Повышение устойчивости растений к стрессовым условиям

4. Повышение эффективности биологической азотфиксации

5. Повышение эффективности фотосинтеза

6. Получение растений с новыми свойствами

Плюсы и минусы генетической инженерии

1. Генетическая трансформация растений может ускорить селекционный процесс, сохранить наиболее желательные признаки сорта и привить два-три новых полезных

2. С помощью применения ГМР создают более дешевые лекарства (инсулин), обеспечивают промышленность сырьем

3. Генетически модифицированные продукты в силу своих качеств адаптации к среде, высокой стабильной урожайности могут решить проблему «голодающих стран»

4. С помощью методов генетической инженерии возможно лечение тяжелых заболеваний человека: онкологических, наследственных заболеваний мозга и нервной системы, для исследования воспалительных и иммунологических заболеваний человека.

1. Некоторые ГМ-растения, устойчивые к насекомым-вредителям, могут быть мутагенными и оказывать сильное негативное влияние на человеческие эмбрионы.

2. Риск образования опухолей существует и при использовании трансгенных растений, отличающихся повышенной урожайностью за счет ряда ферментов. В результате внутриклеточных процессов в некоторых ГМ-сортах табака и риса накапливаются биологически активные продукты разложения этих ферментов, способные спровоцировать развитие рака.

3. Некоторые чужеродные гены могут встраиваться в кишечную микрофлору человека. Большинство ГМ-растений содержит гены устойчивости к антибиотикам. Использование таких продуктов питания может привести к тому, что традиционные методы лечения с помощью антибиотиков будут малоэффективны.

4. Введение в пищевую цепочку человека мутагенной еды может привести к распространению новых штаммов болезнетворных бактерий, а также к увеличению числа людей страдающих пищевыми аллергиями.

5. Введение чужеродных генов в клетки млекопитающих, в частности человека, опасно возникновением химер и гибридов.

6. В России не существует законодательства о генетически-модифицированных продуктах, человек зачастую не имеет информации о покупаемом им продукте, который может быть вреден.

Вывод

Как и любое достижение науки, успехи генетической инженерии могут быть использованы не только на благо, но и во вред человеку. Специально проведенные исследования показали, что опасность неконтролируемого распространения гибридных (рекомбинантных) ДНК не так велика, как представлялось ранее. Гибридные ДНК и несущие их бактерии оказались очень неустойчивыми к влияниям окружающей среды, нежизнеспособными в организме человека и животных при случайном проникновении. Известно, что в природе и без вмешательства человека имеются условия, которые обеспечивают обмен генетической информацией (так называемый поток генов). Однако на пути случайного проникновения в организм чужеродной генетической информации природа создала много эффективных барьеров. При работе с большинством гибридных молекул ДНК вполне достаточно обычных мер предосторожности, которые применяют, например, микробиологи при работе с инфекционным материалом. Для особых случаев разработаны эффективные способы биологической защиты и физической изоляции экспериментальных объектов от человека и окружающей среды.

Список использованной литературы

1. Геном, клонирование, происхождение человека.- Век 2, 2004

2. Маниатис Г. Молекулярное клонирование (методы генетической инженерии) / Маниатис Г., Фрич Э., Сэмбрук Дж. – пер. с англ.. – М., 1984;

3. Молекулярная биология клетки / Албертс Б. [и др.] . –т.1. – М., 1994

4. Уотсон Дж. Рекомбинантные ДНК / Уотсон Дж., Туз Дж., Кури Ц. – пер. с англ.. – М., 1986

Источник

Adblock
detector