Меню

Пнд ф почвы металлы

1 ВВЕДЕНИЕ

Настоящая методика предназначена для определения валового содержания металлов: меди, цинка, свинца, кадмия, марганца, никеля, кобальта и хрома в различных по составу почвах, отходах, а также в донных отложениях и осадках сточных вод, содержащих различное количество органического вещества, методом пламенной атомно-абсорбционной спектрометрии.

Диапазон определяемых концентраций металлов приведен в таблице 1.

В том случае, если содержание металлов превышает верхнюю границу диапазона, указанного в таблице 1, допускается разбавление раствора, полученного после разложения образцов.

Мешающее влияние различных факторов на определение валового содержания металлов и способы его устранения изложены в п. 9.1.

Таблица 1 — Наименование определяемых компонентов и диапазоны измерений

Наименование определяемого компонента

Массовая доля 1 , млн -1

1 1 мг/кг = 1 млн -1

2 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОКАЗАТЕЛЕЙ ТОЧНОСТИ ИЗМЕРЕНИЙ

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 2. Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке качества проведения испытаний в лаборатории;

— оценке возможности использования настоящей методики в конкретной лаборатории.

Таблица 2 — Диапазоны измерений, значения показателей повторяемости, воспроизводимости и точности

Массовая доля, млн -1

Показатель повторяемости (относительное значение среднеквадратического отклонения повторяемости), σ r %

Показатель воспроизводимости (относительное значение среднеквадратического отклонения воспроизводимости), σR, %

Показатель точности 2 (границы относительной погрешности при вероятности Р = 0,95) ±δ, %

Св. 10 до 100 вкл.

Св. 100 до 500 вкл.

Св. 500 до 2000 вкл.

2 Соответствует расширенной стандартной неопределенности при коэффициенте охвата k = 2.

3 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА И РЕАКТИВЫ

3.1 Средства измерений

Спектрофотометр атомно-абсорбционный с пламенным атомизатором

Весы лабораторные специального или высокого класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г

Пипетки мерные с одной отметкой вместимостью 1, 2, 5, 10, 20 см 3 , класс точности 2

Колбы мерные вместимостью 100, 500, 1000 см 3 , класс точности 2

Цилиндры мерные вместимостью 50, 100, 1000 см 3 , класс точности 2

Пипетки мерные градуированные вместимостью 2 см 3

Государственные стандартные образцы (ГСО) состава растворов ионов свинца, никеля, марганца, меди, цинка, кадмия, кобальта и хрома для атомно-абсорбционного анализа (фон — азотная кислота). Относительная погрешность аттестованных значений массовых концентраций не более 1 % при Р = 0,95

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

3.2 Вспомогательные устройства и оборудование

Лампы с полым катодом или безэлектродные разрядные лампы на металлы

Чашки из стеклоуглерода или

Воздух, сжатый до давления не менее 300 кПа (3 атм.)

Газы сжатые и сжиженные в баллонах:

Фильтры бумажные обеззоленные «синяя лента» диаметром 13 — 15 см

Ступка, чашки и пестик фарфоровые

Сита почвенные с размером ячеек 1 мм

Банки из стекла или полиэтилена с широким горлом и притертыми или винтовыми крышками вместимостью 1000 см 3

Плитка электрическая лабораторная с регулятором нагрева и закрытой спиралью

Муфельная печь любого типа, позволяющая получать и поддерживать температуру нагрева до 500 °С

3.3 Реактивы и материалы

Кислота хлористоводородная (соляная), ρ = 1,19 г/см 3

Кислота хлорная, 57 %-ный раствор

1 Все реактивы, используемые для измерений, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

4 МЕТОД ИЗМЕРЕНИЙ

Метод заключается в окислительном обжиге проб с последующим разложением остатка смесью кислот. Количественное определение металлов проводят методом пламенной атомно-абсорбционной спектрометрии в стандартных для каждого элемента условиях.

Из-за сложности и многокомпонентности состава проб и возможного высокого содержания в них кальция, магния, железа, а также различных органических соединений, обязательной процедурой перед кислотным разложением пробы является прокаливание пробы в муфельной печи при температуре 400 — 450 °С в течение двух часов. Повышение температуры обжига выше 450 °С нежелательно из-за возможных потерь свинца.

Читайте также:  Овсяница выращивание через рассаду

Последующее кислотное разложение проводят смесью концентрированных кислот HF-HNО3, HF-HCl, HClO 4 -HF, HNO3-HCl в зависимости от состава проб.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009.

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

5.6 Исполнители должны быть проинструктированы о мерах безопасности при работе со спектрофотометром в соответствии с инструкцией, прилагаемой к прибору.

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

К выполнению измерений и обработке их результатов допускают лиц, имеющих высшее образование, владеющих методом атомно-абсорбционного анализа, знающих принцип действия, конструкцию и правила эксплуатации данного оборудования.

К выполнению работ по пробоподготовке допускают лиц, имеющих среднее специальное химическое образование, обученных методике подготовки проб и получивших удовлетворительные результаты при выполнении контроля процедуры измерений.

7 УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Измерения проводятся в нормальных лабораторных условиях.

— Температура окружающего воздуха (20 ± 5) °С.

— Атмосферное давление (97,3 — 104,6) кПа.

— Относительная влажность воздуха до 80 % при температуре 25 °С.

— Частота переменного тока (50 ± 1) Гц.

— Напряжение в сети (220 ± 22) В.

8 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

При подготовке к выполнению измерений должны быть проведены следующие работы: отбор проб, подготовка прибора к работе, приготовление градуировочных растворов, градуировка прибора, установление и контроль стабильности градуировочной характеристики, подготовка проб к анализу.

8.1.1 Пробы почвы отбираются в соответствии с ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб» и ГОСТ 17.4.4.02-84 «Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа».

8.1.2 Осадки сточных вод, донные отложения отбирают методом точечных проб послойно с глубины (0 — 5) см, (5 — 20) см и от 20 см до 1 м массой не более 200 г каждая. Точечные пробы отбирают на пробной площадке послойно с таким расчетом, чтобы каждая проба представляла собой часть осадка, типичного для сооружений. Отбирают точечные пробы осадков с иловых площадок в зависимости от физических параметров, т.е. ножом или шпателем из прикопок или зачерпыванием пробоотборником. Для анализа объединенную пробу составляют путем смешивания не менее чем пяти точечных проб, взятых с одной пробной площадки. Масса объединенной пробы должна быть не менее 1 кг. Пробы жидких осадков отбирают из трубопроводов или других технологических сооружений с учетом конструкций:

— осадок после отстойников, илоуплотнителей, метантенков отбирают из трубопровода при перекачивании осадка в приемник, не ранее чем через 10 минут работы перекачивающего насоса;

— иловую жидкость отбирают зачерпыванием из распределительной чаши.

Точечные пробы осадков отбирают с интервалом 10 минут в количестве 3 — 4, объемом не менее 500 см 3 каждая, сливают в ведро, перемешивают. Для анализа отбирают объединенную пробу объемом 0,5 — 2 дм 3 .

8.1.3 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

Читайте также:  Как ухаживать за грушей удобрение

цель анализа, предполагаемые загрязнители;

место, время отбора;

должность, фамилия отбирающего пробу, дата.

8.2 Подготовка прибора к работе

Подготовку прибора к работе приводят в соответствии с инструкцией по эксплуатации и устанавливают аналитические параметры, значения которых приведены в таблице 3.

Аналитическая линия, нм

Пламя, характеристика концентрации, мкг/см 3

Спектральная ширина щели, мм

Верхний предел линейной зависимости градуировочного графика, мкг/см 3

Воздух-пропан 0,05 или Воздух-ацетилен

Воздух-пропан 0,05 или Воздух-ацетилен

Воздух-пропан 0,05 или Воздух-ацетилен

Воздух-пропан 0,05 или Воздух-ацетилен

8.3 Приготовление градуировочных растворов ионов металлов

8.3.1 Приготовление 0,5 М раствора хлористоводородной кислоты

40 см 3 концентрированной хлористоводородной кислоты помещают в мерную колбу вместимостью 1 дм 3 , доводят до метки дистиллированной водой.

8.3.2 Приготовление градуировочных растворов А с содержанием ионов металлов 100 мкг/см 3

Растворы готовят из ГСО с содержанием ионов металлов 1 мг/см 3 .

В мерную колбу вместимостью 50 см 3 вносят 5 см 3 ГСО и доводят объем в колбе до метки раствором 0,5 М хлористоводородной кислоты.

Раствор устойчив при хранении в течение месяца.

8.3.3 Приготовление градуировочных растворов В с содержанием ионов металлов 10 мкг/см 3

В мерную колбу вместимостью 50 см 3 вносят 5 см 3 градуировочного раствора А и доводят объем в колбе до метки раствором 0,5 М хлористоводородной кислоты.

Раствор устойчив при хранении в течение 10 дней.

Градуировочные растворы для построения и проверки градуировочного графика готовят в день проведения анализа в мерных колбах вместимостью 50 см 3 в соответствии с таблицей 4. После введения в колбу раствора металла доводят объем растворов в колбах до метки раствором 0,5 М хлористоводородной кислоты.

Таблица 4 — Приготовление градуировочных растворов

Массовая концентрация металлов в градуировочных растворах, мкг/см 3

Аликвотная часть раствора, помещаемая в мерную колбу вместимостью 50 см 3 , см 3

2,5 градуировочного раствора А

1,0 градуировочного раствора А

5,0 градуировочного раствора В

2,5 градуировочного раствора В

1,0 градуировочного раствора В

Градуировку прибора проводят по серии градуировочных растворов.

Устанавливают начало отсчета «0», вводя в пламя 0,5 М раствор хлористоводородной кислоты.

Для построения градуировочного графика каждого элемента измеряют абсорбцию растворов металла в порядке возрастания концентраций. Измерения повторяют дважды. После каждого измерения распыляют дистиллированную воду в течение 5 секунд.

По результатам измерений строят график зависимости средней величины атомного поглощения элемента от его массовой концентрации в растворе.

8.5 Контроль стабильности градуировочной характеристики

Образцами для контроля стабильности градуировочной характеристики являются градуировочные растворы.

Выбираются образцы с концентрацией соответствующего элемента вблизи рабочего диапазона измерений. Образец анализируют в точном соответствии с прописью методики.

Градуировочную характеристику считают стабильной, если для каждого образца для градуировки выполняется следующее условие:

где Хк — аттестованное значение массовой концентрации металла в образце для градуировки, мг/дм 3 ;

Хме — результат контрольного измерения массовой концентрации металла в образце для градуировки, мкг/см 3 ;

Kгр — норматив оперативного контроля градуировочной характеристики (Kгр = 15 %).

Контроль стабильности градуировочной характеристики осуществляется через каждые 10 анализируемых проб, при этом анализируют 1 — 2 градуировочных раствора (см. п. 8.3.4). В случае невыполнения условия стабильности градуировочной характеристики только для одного образца, необходимо повторно выполнить его измерение с целью исключения результата с грубой погрешностью.

Если градуировочная характеристика нестабильна, выясняют и устраняют причины нестабильности (неточно приготовленные градуировочные растворы, несоблюдение условий измерений и др.) и повторяют контроль с использованием других образцов для градуировки. При повторном обнаружении нестабильности строят новый градуировочный график в соответствии с п. 8.4.

При смене реактивов, длительном перерыве в работе прибора осуществляется повторная градуировка прибора по всем элементам.

8.6 Подготовка проб к анализу

Читайте также:  Как сделать парники дома

8.6.1 Пробы доводят до воздушно-сухого состояния в зависимости от содержания влаги, разложив на слое бумаги на лабораторном столе.

8.6.2 После тщательного перемешивания пробу распределяют равномерным слоем (1 см) и отбирают методом квартования необходимое для анализа количество образца. Затем измельчают в фарфоровой ступке, хранят в коробках или пакетах.

8.6.3 Навеску 0,1 — 0.5 г (в зависимости от предполагаемого содержания определяемых элементов) помещают в фарфоровый тигель и прокаливают в муфельной печи при t = (400 — 450) °С в течение двух часов.

Остаток после прокаливания, помещенный в чашку из стеклоуглерода (или в платиновую чашку), обрабатывают 10 — 20 см 3 хлористоводородной кислоты (ρ = 1,19) и нагревают до разложения силикатной части и затем до влажных солей. Ещё раз добавляют 5 см 3 хлористоводородной кислоты для перевода всех солей в хлориды и выпаривают досуха. К остатку приливают 20 см 3 0,5 М хлористоводородной кислоты и нагревают до растворения остатка. Раствор переносят в мерную колбу вместимостью 50 см 3 и доливают до метки 0,5 М НСl.

В том случае, если анализируются пробы на силикатной основе (с большим содержанием крем некислоты), разложение остатка после прокаливания проводят, добавляя к пробе 10 см 3 фтористоводородной кислоты (выпаривают полностью). Возможен вариант: к остатку после прокаливания добавляют 10 см 3 смеси фтористоводородной и азотной кислот (1:1), нагревают на плитке при умеренном нагреве, пока объем раствора не уменьшится до 1 — 2 см 3 . Если кремнекислота разложилась не полностью, процедуру повторяют. Затем пробу обрабатывают хлористоводородной кислотой, как указано во втором абзаце.

Разложение смесью хлористоводородой, фтористоводородной, хлорной и азотной кислот применяют для анализа проб, содержащих остатки органического вещества. Для этого навеску 0,1 — 0,5 г помещают в чашку из стеклоуглерода (или в платиновую чашку), обрабатывают смесью азотной и фтористоводородной кислот (10 — 20 см 3 ) и выпаривают до влажных солей. Если образец разложился не полностью, добавляют ещё 10 см 3 фтористоводородной кислоты и выпаривают досуха до полного её удаления. К сухому остатку добавляют 5 см 3 азотной кислоты, нагревают осторожно до растворения солей и переводят раствор с осадком в стаканчик на 50 см 3 , смывая стенки чашки дистиллированной водой. Стаканчик ставят на плитку и упаривают раствор до 5 см 3 . Добавляют 10 см 3 концентрированной азотной кислоты, 3 см 3 хлорной кислоты и выпаривают до паров хлорной кислоты. Далее продолжают более сильное нагревание для полного сжигания органических веществ. Если растворы остаются темными, в дымящую хлорную кислоту добавляют по каплям, очень осторожно, концентрированную азотную кислоту, предварительно сняв чашки с плитки. Хлорная кислота обладает сильными окислительными свойствами и смесь азотной и хлорной кислот при нагревании до паров хлорной кислоты быстро разрушает все органические вещества. После полного разложения образца (раствор должен быть бесцветным или слабо желтым) раствор выпаривают досуха, добавляют 3 см 3 концентрированной хлористоводородной кислоты и выпаривают до влажных солеи. Влажный остаток растворяют в 10 см 3 0,5 М хлористоводородной кислоты и переводят раствор в мерную колбу вместимостью 50 см 3 , доливают до метки 0,5 М НСl и перемешивают.

Возможны другие способы пробоподготовки — в аналитическом автоклаве или с применением микроволновой системы.

8.6.4 Для пересчета массы навески на абсолютно сухую пробу определяют содержание гигроскопической влаги. Для этого берут 3 навески той же массы, помещают в предварительно подготовленные фарфоровые чашки (п. 8.6.5) и высушивают при t = (105 ± 5) °С в сушильном шкафу до постоянной массы.

где g — содержание гигроскопической влаги, %;

Рвозд.сух. — масса воздушно-сухой навески, г;

Рсух — масса абсолютно сухой навески, г.

Источник

Adblock
detector