Меню

Почва растения животные микроорганизмы почва этот круговорот

Биология. 10 класс

§ 53. Круговорот веществ в биосфере

Преамбула

Основой жизни на Земле являются круговороты веществ в биосфере и постоянный приток солнечной энергии. Круговорот веществ — цикличный, многократно повторяющийся процесс перемещения и перехода химических элементов из живых тел в соединения неживой природы и обратно. С использованием солнечной энергии на планете протекает два взаимосвязанных круговорота веществ: большой — геологический и малый — биологический.

Геологический (большой) круговорот веществ — процесс миграции веществ и природных вод, происходящий в результате воздействия абиотических факторов (факторов неживой природы). При большом геологическом круговороте, протекающем миллионы лет, горные породы разрушаются, выветриваются, вещества растворяются и попадают в Мировой океан. Именно большой круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Биологический (малый) круговорот веществ процесс циркуляции веществ между растениями, животными, грибами, микроорганизмами, атмосферой и почвой. Все химические элементы, используемые в процессах жизнедеятельности организмов, постоянно перемещаются, переходя из живых тел в соединения неживой природы и обратно. Так, в природе из неорганических веществ автотрофами синтезируются органические вещества. Выделенные в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы автотрофами для синтеза органических веществ. Возможность многократного использования веществ делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии Солнца.

Геологический и биологический круговороты в совокупности формируют общий биогеохимический круговорот веществ, основу которого составляют циклы воды, углерода, кислорода и азота.

Источник

Экология СПРАВОЧНИК

Информация

Круговорот биологический малый

Биологический (малый) круговорот — циркуляция веществ между растениями, животным миром, микроорганизмами и почвой. Основа его — фотосинтез, т. е. превращение зелеными растениями и особыми микроорганизмами лучистой энергии Солнца в энергию химических связей органических веществ. Фотосинтез обусловил появление на Земле кислорода при помощи зеленых организмов, озонового слоя и условий для биологической эволюции.[ . ]

Малый биологический круговорот веществ имеет особенно большое значение в почвообразовании, поскольку именно взаимодействие биологического и геологического круговоротов лежит в основе почвообразовательного процесса.[ . ]

Круговорот азота в настоящее время подвергается сильному воздействию со стороны человека. С одной стороны, массовое производство азотных удобрений и их использование приводят к избыточному накоплению нитратов. Азот, поступающий на поля в виде удобрений, теряется из-за отчуждения урожая, выщелачивания и денитрификации. С другой стороны, при снижении скорости превращения аммиака в нитраты аммонийные удобрения накапливаются в почве. Возможно подавление деятельности микроорганизмов в результате загрязнения почвы отходами промышленности. Однако все эти процессы носят достаточно локальный характер. Гораздо большее значение имеет поступление оксидов азота в атмосферу при сжигании топлива на теплоэлектростанциях и на транспорте. Азот, «фиксированный” в промышленных выбросах, токсичен, в отличие от азота биологической фиксации. При естественных процессах оксиды азота появляются в атмосфере в малых количествах в качестве промежуточных продуктов, но в городах и промышленных районах их концентрации становятся опасными. Они раздражают органы дыхания, а под воздействием ультрафиолетового излучения возникают реакции между окси-дамй азота и углеводородами с образованием высокотоксичных и канцерогенных соединений.[ . ]

Круговороты как форма перемещения вещества присущи и биострому, но здесь они приобретают свои особенности. Горизонтальный круговорот представлен триадой: рождение — размножение— гибель (разложение); вертикальный — процессом фотосинтеза. И тот и другой в формулировке А. И. Перельмана (1975) находят единство в малом биологическом круговороте: «. химические элементы в ландшафте совершают круговороты, в ходе которых многократно поступают в живые организмы («организуются») и выходят из них («минерализуются»)»2.[ . ]

Круговорот биологический (биотический) — явление непрерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энергии1 и информации в пределах экологических систем различного иерархического уровня организации — от биогеоценоза до биосферы. Круговорот веществ в масштабах всей биосферы называют большим кругом (рис. 6.2), а в пределах конкретного биогеоценоза — малым кругом биотического обмена.[ . ]

Любой биологический круговорот характеризуется многократным включением атомов химических элементов в тела живых организмов и выходом их в окружающую среду, откуда они вновь захватываются растениями и вовлекаются в круговорот. Малый биологический круговорот характеризуется емкостью — количеством химических элементов, находящихся одновременно в составе живого вещества в данной экосистеме, и скоростью — количеством живого вещества, образующегося и разлагающегося в единицу времени.[ . ]

В основе малого биологического круговорота веществ лежат процессы синтеза и разрушения органических соединений с участием живого вещества. В отличие от большого малый круговорот характеризуется ничтожным количеством энергии.[ . ]

Напротив, биологический круговорот вещества проходит в границах обитаемой биосферы и воплощает в себе уникальные свойства живого вещества планеты. Будучи частью большого, малый круговорот осуществляется на уровне биогеоценоза, он заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и жизненные процессы как их самих, так и организмов — консументов. Продукты разложения органического вещества почвенной микрофлорой и мезофауной (бактерии, грибы, моллюски, черви, насекомые, простейшие и др.) вновь разлагаются до минеральных компонентов, опять-таки доступных растениям и поэтому вновь вовлекаемых ими в поток вещества.[ . ]

Читайте также:  Как сделать парник нам дугах

Описанный круговорот веществ на Земле, поддерживаемый солнечной энергией, — круговая циркуляция веществ между растениями, микроорганизмами, животными и другими живыми организмами — называется биологическим круговоротом веществ, или малым круговоротом. Время полного обмена вещества по малому круговороту зависит от массы этого вещества и интенсивности процессов его продвижения по циклу и оценивается в несколько сот лет.[ . ]

Взаимосвязь малого биологического круговорота веществ в биосфере с большим геологическим круговоротом

Существуют большой и малый — (биологический) круговороты вещества в природе, круговорот воды.[ . ]

Несмотря на относительно малую толщину слоя водяного пара в атмосфере (0,03 м), именно атмосферная влага играет основную роль в циркуляции воды и ее биогеохимическом круговороте. В целом для всего земного шара существует один источник притока воды — атмосферные осадки — и один источник расхода — испарение, составляющее 1030 мм в год. В жизнедеятельности растений огромная роль воды принадлежит осуществлению процессов фотосинтеза (важнейшее звено биологического круговорота) и транспирации. Суммарное испарение, или масса воды, испаряемой древесной или травянистой растительностью, поверхностью почвы, играет важную роль в круговороте воды на континентах. Грунтовые воды, проникая сквозь ткани растений в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.[ . ]

На базе большого геологического круговорота возник круговорот органических веществ — малый, в основе которого лежат процессы синтеза и разрушения органических соединений. Эти два процесса обеспечивают жизнь на Земле. Энергия биологического круговорота составляет всего 1% уловленной Землей солнечной энергии, но именно она совершает громадную работу по созиданию живого вещества.[ . ]

Солнечная энергия обеспечивает на Земле два круговорота веществ: геологический, или большой, и малый, биологический (биотический).[ . ]

Дестабилизация процесса нитрификации нарушает поступление в биологический круговорот нитратов, количество которых предопределяет ответную реакцию на изменение среды обитания у комплекса денитрификаторов. Ферментные системы денитрификаторов уменьшают скорость полного восстановления, слабее вовлекая закись азота в конечный этап, осуществление которого требует значительных энергетических затрат. В результате этого содержание закиси азота в надпочвенной атмосфере эродированных экосистем достигало 79 — 83% (Косинова и др., 1993). Отчуждение части органических веществ из черноземов под воздействием эрозии отражается на пополнении азотного фонда в ходе фото- и гетеротрофной фиксации азота: аэробной и анаэробной. На первых этапах эрозии быстрыми темпами идет подавление именно анаэробной азотфиксации в силу параметров лабильной части органического вещества (Хазиев, Багаутдинов, 1987). Активность ферментов инвертазы и каталазы в сильносмытых черноземах по сравнению с несмытыми уменьшилась более чем на 50%. В серых лесных почвах по мере увеличения их смытости наиболее резко снижается инвертазная активность. Если в слабосмытых почвах отмечается постепенное затухание активности с глубиной, то в сильносмытых уже в подпахотном слое инвертазная активность очень мала или не обнаруживается. Последнее связано с выходом на дневную поверхность иллювиальных горизонтов с крайне низкой активностью фермента. По активности фосфатазы и, особенно, каталазы четко выраженной зависимости от степени смытости почв не наблюдалось (Личко, 1998).[ . ]

Геохимия ландшафта раскрывает скрытую, наиболее глубинную сторону малого географического круговорота вещества и энергии. Понятие малого географического круговорота еще недостаточно разработано в физической географии. В общем виде его можно представить в виде многострунного не вполне замкнутого кругового потока, состоящего из поступающего и излучаемого тепла, биологического круговорота химических элементов, малого круговорота воды (осадки — испарение, наземный и подземный сток и приток), эоловой миграции — привнося и выноса — минерального вещества.[ . ]

Ослабление дернового процесса почвообразования обусловлено низкой интенсивностью биологического круговорота, малой продуктивностью растительности. Ежегодный опад при общей биомассе около Ют/га не превышает 0,4—0,5т/га. Основная масса опада представлена корневыми остатками. В биологический круговорот вовлекается около 70 кг/га азота и 300 кг/га зольных элементов.[ . ]

Влажные тропические леса — это достаточно древние кли-максные экосистемы, в которых круговорот питательных веществ доведен до совершенства — они мало теряются и немедленно поступают в биологический круговорот, осуществляемый мутуалистическими организмами и неглубокими, большей частью воздушными, с мощной микоризой, корнями деревьев. Именно благодаря этому на скудных почвах так пышно растут леса.[ . ]

Формирование химического состава почвы осуществляется под влиянием большого геологического и малого биологического круговорота веществ в природе. Наиболее легко из почвы выносятся такие элементы, как хлор, бром, йод, сера, кальций, магний, натрий.[ . ]

Из-за высочайшей активности биогеохимических процессов и колоссальных объемов и масштабов оборота веществ биологически значимые химические элементы находятся в постеянном циклическом движении. По некоторым подсчетам, если принять, что биосфера существует не менее чем 3,5—4 млрд. лет, то вся вода Мирового океана прошла через биогеохимический цикл не менее 300 раз, а свободный кислород атмосферы — не менее 1 млн. раз. Круговорот углерода происходит за 8 лет, азота за 110 лет, кислорода за 2500 лет. Основная масса углерода, сосредоточенная в карбонатных отложениях дна океана (1,3 х 1016 т), других кристаллических горных породах (1 х 1016 т), каменном угле и нефти (0,34 х 1016 т), участвует в большом круговороте. Углерод, содержащийся в растительных (5 х 10м т) и животных тканях (5 х 109 т), участвует в малом круговороте (биогеохимическом цикле).[ . ]

Читайте также:  Размеры теплой грядки для огурцов

Однако на суше, в дополнение к приносимым с океана осадкам, происходит испарение и осадки по замкнутому на суше круговороту воды. Если бы не существовало биоты континентов, то эти дополнительные осадки суши были бы намного меньше осадков, ПрйКОСйМЫХ С ОК6Э.На, так КЗ.К испзрсние с поверхности рек И 03£р ничтожно мало в сравнении с осадками, приносимыми с океана. Только образование растительного покрова и почвы приводит к большой величине испарения с поверхности суши. При образовании растительного покрова происходит накопление воды в почве, растениях и континентальной части атмосферы, что приводит к увеличению замкнутого круговорота на суше. В настоящее время осадки на суше в среднем втрое превосходят речной сток. Следовательно, только одна треть осадков приносится с океана и более двух третей обеспечиваются замкнутым круговоротом воды на суше. Таким образом, вода на суше становится биологически накапливаемой, главная часть водного режима суши формируется биотой и может регулироваться биологически.[ . ]

Выявить некоторые главные особенности проявления первой и второй сил удобно, исходя из представления о действии на Земле круговоротов вещества: большого — геологического (геокруговорот) и малого — биологического (биокруго вор от).[ . ]

Растительные сообщества южной тайги более устойчивы к химическому загрязнению по сравнению с сообществами северной тайги. Малая устойчивость северотаежных ценозов обусловлена их незначительным видовым разнообразием и более простым строением, наличием чувствительных к химическому загрязнению видов (мхи и лишайники), малой продуктивностью и емкостью биологического круговорота, меньшей способностью к восстановлению.[ . ]

Однако любая экосистема, независимо от размера, включает в себя живую часть (биоценоз) и ее физическое, то есть неживое, окружение. При этом малые экосистемы входят в состав все более крупных, вплоть до глобальной экосистемы Земля. Аналогично общий биологический круговорот вещества на планете также складывается из взаимодействия множества более мелких, частных круговоротов.[ . ]

Почваг является неотъемлемым компонентом наземных биогеоценозов. Она осуществляет сопряжение (взаимодействие) большого геологического и малого биологического круговоротов веществ. Почва — уникальное гГо сложности вещественного состава природное образование. Вещество почвы представлено четырьмя физическими фазами: твердой (минеральные и органические частицы), жидкой (почвенный раствор), газообразной (почвенный воздух) и живой (организмы). Для почв характерна сложная пространственная организация и дифференциация признаков, свойств и процессов.[ . ]

Согласно первому следствию мы можем рассчитывать лишь на малоотходное производство. Поэтому первым этапом развития технологий должна быть их малая ресурсоемкость (как на входе, так и на выходе — экономность и незначительные выбросы), вторым этапом будет создание цикличности производств (отходы одних могут быть сырьем для других) и третьим — организация разумного захоронения неминуемых остатков и нейтрализация неустранимых энергетических отходов. Представление, будто биосфера работает по принципу безотходности, ошибочно, так как в ней всегда накапливаются выбывающие из биологического круговорота вещества, формирующие осадочные породы.[ . ]

Сущность почвообразования по В. Р. Вильямсу определяется как диалектическое взаимодействие процессов синтеза и разложения органического вещества, протекающее в системе малого биологического круговорота веществ.[ . ]

На разных этапах развития биосферы процессы в ней не были одинаковыми, несмотря на то, что шли по аналогичным схемам. Наличие ярко выраженного круговорота веществ, согласно закону глобального замыкания биогеохимического круговорота, является обязательным свойством биосферы любого этапа ее развития. Вероятно, это непреложный закон ее существования. Следует особо обратить внимание на увеличение доли биологического, а не геохимического, компонента в замыкании биогеохимического круговорота веществ. Если на первых этапах эволюции преобладал общебиосферный цикл — большой биосферный круг обмена (сначала только в пределах водной среды, а затем разделенный на два подцикла — суши и океана), то в дальнейшем он стал дробиться. Вместо относительно гомогенной биоты появились и все глубже дифференцировались экосистемы различного уровня иерархии и географической дислокации. Приобрели важное значение малые, биогеоценотические, обменные круги. Возник так называемый «обмен обменов» — стройная система биогеохимических круговоротов с высочайшим значением биотической составляющей.[ . ]

В средних широтах приход энергии от Солнца равен 48—61 тыс. ГДЖ/га в год. При внесении дополнительной энергии более 15 ГДЖ/га в год возникают неблагоприятные для среды процессы — эрозия и дефляция почв, заиление и загрязнение малых рек, эфтрофикация водоемов, нарушения биологического круговорота в экосистемах.[ . ]

Для восточно-сибирской области характерны суровые малоснежные зимы и выпадение в основном летних осадков, промывающих почвенную толщу. В результате в восточно-сибир-ских черноземах имеет место периодический промывной режим. Биологический круговорот подавлен низкими температурами. Вследствие этого содержание гумуса в забайкальских черноземах невелико (4—9%) и мощность гумусового горизонта мала. Содержание карбонатов очень незначительно или их совсем нет. Поэтому черноземы восточно-сибирской фуппы называют малокарбонатными и бескарбонатными (например, черноземы выщелоченные малокарбонатные или бескарбонат-ные, черноземы обыкновенные малокарбонатные).[ . ]

Большинство второстепенных элементов в концентрациях, обычных для многих природных экосистем, почти не оказывают влияния на организмы, возможно, потому, что организмы к ним адаптировались. Таким образом, миграции этих элементов мало интересовали нас, если бы в окружающую среду не слишком часто попадали побочные продукты горнодобывающей промышленности, различных производств, химической промышленности и современного сельского хозяйства, продукты, содержащие высокие концентрации тяжелых металлов, ядовитые органические соединения и другие потенциально опасные вещества. Даже очень редкий элемент, если он вносится в среду в форме высокотоксичного соединения металла или радиоактивного изотопа, может приобрести важное биологическое значение, так как даже небольшое (с геохимической точки зрения) количество такого вещества способно оказывать выраженный биологический эффект.[ . ]

Читайте также:  Изменение состояния почвы результате деятельности человека

Химическая природа витаминов и других стимулирующих рост органических соединений, а также потребность в них человека и домашних животных известны давно; однако исследование этих веществ на уровне экосистемы только началось. Содержание органических питательных веществ в воде или почве так мало, что их следовало бы назвать «питательными микро-микроэлементами» в отличие от «питательных макроэлементов», таких, как азот, и «питательных микроэлементов», таких, как «следовые» металлы (см. гл. 5). Нередко единственным способом измерить их содержание является биологическая проба: используются специальные штаммы микроорганизмов, интенсивность роста которых пропорциональна концентрации органических питательных веществ. Как подчеркивалось в предыдущем разделе, о роли того или иного вещества и скорости его потока не всегда можно судить по его концентрации. Сейчас становится ясно, что органические питательные вещества играют важную роль в метаболизме сообщества и что они могут быть лимитирующим фактором. Эта интереснейшая область исследований в ближайшее время, несомненно, привлечет к себе внимание ученых. Приводимое ниже описание круговорота витамина В12 (кобаламина), взятое из работы Провасоли (1963), показывает, как мало мы знаем о круговороте органических питательных веществ.[ . ]

В.Р.Вильямс (1863-1939) разработал учение о факторах земледелия. Согласно первому закону земледелия, ни один из факторов жизни растений не может быть заменен другим. И, кроме того, все факторы жизни растений, безусловно, равнозначимы (второй закон). Выделим его важную идею о том, что почва — это результат взаимодействия малого — биологического и большого — геологического круговорота вещества.[ . ]

Свои положения в области генетического почвоведения и изучения плодородия почв В. Р. Вильямс тесно связывал с практическими вопросами сельского хозяйства и положил их в основу травопольной системы земледелия. Наиболее важные и оригинальные взгляды были высказаны В. Р. Вильямсом о роли живых организмов в почвообразовании, о сущности почвообразовательного процесса и природе отдельных конкретных процессов, о малом биологическом круговороте веществ, о плодородии почв, почвенном гумусе и структуре почв.[ . ]

Эти подходы соотносятся по существу как стратегия и тактика, как выбор долговременного поведения и меры первоочередных решений. Они не могут быть разъединены: загрязнение окружающей человека среды наносит вред другим организмам и живой природе в целом, а деградация природных систем ослабляет их способность к естественному очищению среды. Но всегда следует понимать, что сохранить качество окружающей человека среды невозможно без участия природных экологических механизмов. Даже если мы освоим мало загрязняющие технологии, мы ничего не достигнем, если одновременно не перестанем мешать природе регулировать состав среды, очищать ее и делать пригодной для жизни. Самые чистые технологии и самые совершенные средозащитные устройства не спасут нас, если будет продолжаться вырубка лесов, уменьшаться разнообразие биологических видов, нарушаться круговорот веществ в природе. Следует подчеркнуть, что с экологической точки зрения концепция «охраны» порочна с самого начала, так как деятельность следует строить таким образом, чтобы не допускать, предотвращать все эффекты и результаты, от которых потом пришлось бы «охранять».[ . ]

Около 99 % всего вещества в биосфере трансформировано живыми организмами, причем суммарная биомасса живого вещества Земли оценивается всего в 2,4 • 1012 т сухого вещества, что составляет 10“9 часть массы Земли. Ежегодное воспроизводство биомассы составляет около 170 млрд. т сухого вещества. Полная биомасса растительных организмов в 2500 раз больше, чем у животных, но видовое разнообразие зоосферы в 6 раз богаче, чем фитосферы. Если выложить все живые организмы в один слой, то на поверхности Земли образовался бы биологический покров толщиной всего в 5 мм. Но несмотря на малые размеры биоты, именно она определяет локальные условия на поверхности земной коры. Ее существование ответственно за появление в атмосфере свободного кислорода, формирование почв и круговорот элементов в природе.[ . ]

Грибы мы уже описывали выше, и собственно грибом мы называем его плодовое тело, однако это лишь часть огромного организма. Это обширная сеть микроскопических волокон (рифов), которая называется мицелием (грибницей) и пронизывает детрит, в основном древесину, лиственный опад и т. п. Мицелий по мере роста выделяет значительное число ферментов, которые разлагают древесину до состояния, готового к употреблению, и постепенно грибница полностью разлагает валежную древесину. Интересно, как пишет Б. Небел (1993), что можно находить грибы на неорганической почве, так как их мицелий способен извлекать из ее толщи даже весьма малые по концентрации органические вещества. Сходным образом функционируют и бактерии, но уже на микроскопическом уровне. Весьма важной для поддержания устойчивости биологического круговорота является способность грибов и некоторых бактерий образовывать громадные количества спор (репродуктивных клеток). Это микроскопические частицы переносятся воздушными потоками в атмосфере на весьма значительные расстояния, что позволяет им распространяться повсеместно и давать жизнеспособное потомство на любом пространстве при наличии оптимальных условий жизнедеятельности.[ . ]

Источник

Adblock
detector