Меню

Показатели плодородия почвы таблица

Показатели плодородия почвы таблица

Глава 10. ПЛОДОРОДИЕ ПОЧВ

Значение почвы как основного средства сельскохозяйственного производства определяется ее основным свойством – плодородием. Плодородие – это способность почвы удовлетворять потребность растений во всех необходимых им условиях (элементах питания, воде, воздухе, тепле и др.) для нормального роста и развития.

Развитие учения о плодородии почв связано с именем русского почвоведа В.Р.Вильямса. Он изучил формирование и развитие плодородия в ходе процесса почвообразования, показал взаимосвязь со свойствами почв и пути его повышения при сельскохозяйственном использовании.

Плодородие – особое специфическое свойство почвы, являющееся главным качественным отличительным признаком ее от горной породы. Плодородия является результатом почвообразования, а при использовании в сельском хозяйстве — результатом окультуривания.

§1. Виды почвенного плодородия

Различают следующие виды плодородия: естественное (природное), искусственное, эффективное (экономическое) и потенциальное.

Естественное плодородие – то плодородие, которым обладает почва в природном состоянии без вмешательства человека. Естественное плодородие в одном случае может быть сравнительно высоким, в другом весьма низким, но всегда определяется сочетанием и совместным влиянием природных факторов и процессов почвообразования. Естественным плодородием в чистом виде практически обладают лишь целинные земли. Оно определяется биологической продуктивностью, т.е. количеством растительной массы, создаваемой за год на единицу площади.

Искусственное плодородие – плодородие, которым обладает почва в результате целенаправленного воздействия человека (обработки, удобрения, мелиорации и других приемов по окультуриванию). С момента, когда целинный участок вовлекается в оборот и почва становится средством производства и продуктом труда человека, она наряду с естественным приобретает искусственное плодородие. В чистом виде оно возникает при создании субстратов для выращивания растений в теплицах, парниках и т.п.

Искусственное плодородие свойственно всем в той или иной мере окультуренным почвам. Однако как бы ни была высоко окультурена почва, она наряду с искусственным всегда обладает и естественным плодородием, обусловленным природными свойствами почвы. Чем выше культура земледелия, тем больше изменились первоначальные качества почв и тем сильнее выражено в ней искусственное плодородие. Однако определить, какая часть плодородия окультуренной почвы относится к ее естественному плодородию, а какая к искусственному, невозможно. Эти два вида плодородия неразрывно связаны между собой и формируют эффективное (экономическое) плодородие.

Эффективное (экономическое) плодородие представляет собой ту часть плодородия почвы, которая реализуется в виде урожая растений. Оно является реальным выражением искусственного и природного плодородия, вместе взятых, и представляет собой результат воздействия человека на почву в определенных социально-экономических условиях. Следовательно, к основным факторам, от которых зависит эффективное плодородие, относятся не только уровень природного плодородия, но в большей степени условия использования почв в производстве, уровень развития науки, техники и реализации их достижений, и растет вместе с ростом последних. Является частью потенциального плодородия почв.

Потенциальное плодородие – это суммарное плодородие почвы, определяемое ее приобретенными в процессе почвообразования или созданными (измененными) человеком свойствами. Характеризуется запасами элементов питания растений, формами их соединений и сложным взаимодействием всех других свойств, определяющих способность почвы в благоприятных условиях обеспечения растений другими факторами – водой, воздухом, теплом (а это возможно при окультуривании) – длительное время мобилизовать в необходимых для растений количествах элементы питания и поддерживать высокий уровень эффективного плодородия. Огромное потенциальное плодородие имеет, например, луговой торфяник, после осушения и освоения на нем получают очень высокие урожаи культурных растений за счет частичного расхода запасного фонда. Высоким потенциальным плодородием обладают черноземные почвы, низким – подзолистые.

Различные растения предъявляют неодинаковые требования к почвенным условиям. Поэтому говорят об относительном плодородии почв, т.е. по отношению к определенным видам растений или растительным формациям. Одна и та же почва может быть плодородной для одних и малопригодной для других растений. Например, болотные почвы высокоплодородны для болотной растительности и не подходят для степной, кислые подзолистые плодородны в отношении лесной растительности, на солончаках хорошо произрастает галофильная растительность.

§2. Факторы и условия плодородия почв. Воспроизводство плодородия

Различают факторы и условия почвенного плодородия. К первым относятся элементы азотного и зольного питания растений, лучистая энергия, вода, воздух и тепло – необходимые земные факторы жизни и роста растений, ко вторым – совокупность свойств и режимов, сложное взаимодействие которых определяет возможность обеспечения растений земными факторами (физические и физико-химические свойства, наличие токсических веществ и др.).

Главные показатели (условия), определяющие уровень почвенного плодородия, можно объединить в следующие группы:

1) комплекс физических свойств почвы – механический состав, структура, физико-механические свойства, воздушные, водные и тепловые свойства;

2) комплекс химических свойств – гумусовый состав, минералогический и химический состав, количество подвижных форм макро- и микроэлементов, наличие токсических веществ, отсутствие избытка легкорастворимых солей;

Читайте также:  Внекорневая подкормка для туи

3) комплекс физико-химических свойств – реакция, емкость поглощения, состав обменных катионов, степень насыщенности основаниями, окислительно-восстановительный потенциал;

4) комплекс биологический свойств – количество микроорганизмов, преобладание бактерий (нитрифицирующих, целлюлозоразрушающих, наличие азотфиксирующих), ферментативная активность, «дыхание» почвы, фитосанитарное состояние;

5) комплекс режимов почвы – благоприятные водно-воздушный, пищевой и тепловой.

Необходимо подчеркнуть, что плодородие проявляется как результат сложного взаимодействия и взаимовлияния свойств и режимов почвы. Свойства почвы могут оказывать как положительное, так и отрицательное влияние на уровень ее плодородия. В таблице 13 перечислены основные лимитирующие факторы почв и соответствующие приемы их мелиорации.

Лимитирующие факторы плодородия и прием их ликвидации

Источник

Сельское хозяйство | UniversityAgro.ru

Агрономия, земледелие, сельское хозяйство

Home » Агрохимия » Агрохимические показатели плодородия почв

Популярные статьи

Агрохимические показатели плодородия почв

Агрохимические показатели плодородия почв — комплекс свойств, характеризующих способность почвы обеспечивать растения элементами питания и оптимальный питательный режим.

Питательный режим почв

Поступление питательных веществ происходит из почвенного раствора, который находится в постоянном равновесии с твердой фазой почвы. Скорость протекания этого процесса очень высокая и зависит от концентрации веществ. Вследствие чего, состав почвенного раствора высокодинамичен.

На содержание доступных форм питательных элементов влияет их валовый запас в почве. Почвенная микрофлора, особенно обитающая в прикорневой зоне (ризосфере) оказывает существенное влияние на перевод валовых запасов в доступные формы.

Состав почвы

Состав почвы во многом определяет агрохимические свойства почвы. Состав принято делить на три фазы:

  • газовую, или газообразную, фазу;
  • жидкую фазу, или почвенный раствор;
  • твердую фазу, подразделяющуюся на минеральную часть и органическую часть (органическое вещество почвы).

Содержание в почве и доступность азота

Источники поступления азота и его трансформация в почве

Естественными источниками поступления азота являются: деятельность азотфиксирующих свободноживущих и клубеньковых бактерий и поступление с атмосферными осадками.

Процесс азотфиксации осуществляется свободноживущими в почве анаэробными бактериями Clostridium pasterianum, аэробными Azotobacter croococcum и клубеньковыми, живущими в симбиозе на корневой системе бобовых растений, Rhizobium. На их жизнедеятельность и эффективность азотфиксации влияют обеспеченность углеводами, фосфором, кальцием и другими элементами, реакция почвенной среды, температура, влага. Накапливают 5-15 кг азота на 1 га в течение года. Способностью азотфиксации обладают также некоторые водоросли и грибы, находящиеся в симбиозе с растениями.

Бактерии группы Azotobacter хорошо развиваются на аэрируемых окультуренных, хорошо прогретых, нейтральных почвах, содержащих фосфор и кальций. При благоприятных условиях накапливает до 30 кг азота на 1 га.

Штаммы и расы бактерий группы Rhizobium характерны для каждого вида бобовых растений. Эффективность азотфиксации зависит от вида растения, агротехники, почвы и ряда других условий. При оптимальных условиях эти бактерии могут накапливать в симбиозе с: люцерной — 250-300 (до 500) кг азота на 1 га, люпином — 160-170 (до 400), клевером — 150-160 (до 250), соей — 100, викой, горохом, фасолью — 70-80 кг азота на 1 га. На их активность положительно влияет внесение органических и фосфорных удобрений и известкование почвы.

Введение в севооборот бобовых культур способствует увеличению запасов азота в почве.

С атмосферными осадками ежегодно в виде аммиака и нитратов, образующихся под действием грозовых разрядов, поступает 2-11 кг азота на 1 га.

Естественные источники азота представляют практический интерес, но их количество значительно меньше выносимого с урожаем количества азота. Поэтому для воспроизводства почвенных запасов азота требуется внесение органических и минеральных удобрений.

Важную роль в обеспечении растений азотом играют запасы гумуса, в которых содержится около 5% азота. На долю минеральных форм азота приходится около 1-3%. По данным И.В. Тюрина, запасы гумуса в метровом слое почвы на 1 га, составляют: сероземы — 50 т, светло-каштановые — 100, темно-каштановые и южные черноземы — 200-250, обыкновенные черноземы — 400-500, мощные черноземы — 800, выщелоченные черноземы — 500-600, серые лесостепные — 150-300, дерново-подзолистые — 80-120 т. На пахотный слой приходится наибольшая доля гумуса, который обогащен микрофлорой и из которой поступает основная часть минерализованного азота для питания растений.

Аммонификация — микробиологический процесс трансформации азота органического вещества в аммонийные соединения. Аммонийные соли окисляются в результате жизнедеятельности нитрифицирующих бактерий (Nitrosomonas и Nitrobacter) в нитраты и нитриты. Для нормальной жизнедеятельности этих групп бактерий требуется обеспечение оптимальных условий: температуры 25-32 °С, достаточного количества кислорода и воды, кислотности почвы, близкой к нейтральной. Это достигается путем рыхления почвы, применения органических удобрений и известкования кислых почв. Проведение этих приемов позволяет активизировать процессы трансформации азота из органического вещества и сократить его потери. Нарушение этих требований приводит к противоположному эффекту — переходу азотных соединений в газообразные аммиак и азот, то есть активизирует процессы денитрификации.

Читайте также:  Можно ли использовать как удобрения птичьи

Другим приемом регулирования баланса азота в почве является применение бактериальных препаратов (ризоторфин).

Потери азота

Содержание азота в минеральной форме очень динамично и зависит от активности микрофлоры почвы, влажности, фазы развития растений.

Потери азота складываются из:

  • иммобилизации, то есть поглощение азота микрофлорой почвы;
  • выщелачивания — вымывание азота, преимущественно нитратных форм в грунтовые воды;
  • улетучивание в виде аммиака в атмосферу;
  • фиксация аммонийных форм почвой или необменной поглощение.

Процесс иммобилизации протекает особенно интенсивно при внесении органических удобрений с широким соотношением углерода и азота — 20-25:1. Плазма микробов содержит значительно большее количество азота (10:1), вследствие чего потребление азота микрофлорой происходит за счет органического вещества и минеральных запасов почвы. Что ухудшает азотное питание культурных растений.

В целях компенсации влияния иммобилизации азота микроорганизмами, при запашке соломы или других растительных остатков богатых целлюлозой перед посевом последующих культур добавляют дополнительно около 1 % минерального азота.

Иммобилизация азота может иметь положительное значение на легких почвах с достаточным увлажнением, благодаря закреплению подвижных форм азота в условиях сильной их вымываемости. В дальнейшем, при разложение остатков микроорганизмов, часть закрепленного азота связывается гумусовыми соединениями, другая часть переходит в минеральные формы.

Вымывание подвижных форм азота, преимущественно нитратов, особенно актуально на легких по гранулометрическому составу почвах с низким уровнем органического вещества в условиях достаточного, избыточного увлажнения и орошения. Культуры сплошного посева снижают этот эффект благодаря интенсивному поглощению азота, тогда как в паровых полях эффект вымывания усиливается.

Потери азота в виде газообразных веществ происходят вследствие денитрификации, то есть восстановления нитратного азота до аммиака и газообразного азота в результате деятельности денитрифицирующих микроорганизмов. Деятельность денитрификатор активизируется анаэробными условиями, когда микробы вынуждены использовать для дыхания кислород, находящийся в нитратной форме, восстанавливая азот до свободной формы. Процесс денитрификации стимулируется создание анаэробных условий, щелочной реакцией среды, избыточным содержанием органического вещества с высоким содержанием глюкозы и клетчатки, высокой влажностью почвы.

Другим путем потери азота в виде газообразных форм (диоксида и монооксида азота) является разложение азотистой кислоты при кислотности почвы 6 и ниже.

Суммарные потери азота могут достигать 50%. При разложении 1 т гумуса образуется 50 кг/га азота, однако часть его теряется в атмосферу в виде газообразного аммиака, улетучивающегося в атмосферу. Особенно это актуально при несоблюдении технологии хранения и применения навоза, навозной жижи и других органических удобрений, при этом потери достигают 30-40%.

Существенную часть азота потребляют сорные растения, причем это количество может превосходить потребление культурными.

Фиксация азота почвой

Часть азота может поглощаться некоторыми минералами из группы гидрослюд. В увлажненном состоянии кристаллическая решетка этих минералов обменно поглощает аммонийный азот, но при подсыхании связывает его, делая малодоступным для растений и микрофлоры.

По данным А.В. Петербургского и В.Н. Кудеярова, в пахотном слое содержится от 130 до 350 кг/га фиксированного азота в зависимости от типа и разновидности почвы. Верхний слой содержит 2-7% фиксированного аммония от общего количества, в подпочве его доля повышается до 30-35%. Объясняется это снижением содержания гумуса в глубоких слоях, а следовательно, и азота в органическом веществе.

На способность почв необменно связывать аммоний влияет вид глинистых минералов, температуры среды, содержание гумуса, реакции почвенного раствора, микробиологическая активность, влажность. Фиксация аммония возрастает с увеличением температуры, рН (максимально на солонцах), содержания гумуса (химическое связывание). На связывание азота влияет содержание глинистых минералов с трехслойной кристаллической решеткой, прежде всего вермикулита.

Фиксированный аммоний может вытесняться обратно в почву при определенных условиях, например, введении в кристаллическую решетку катионов кальция, магния, натрия, становясь доступным для растений.

Содержание в почве и доступность фосфора

Cодержание фосфора (Р2О5) в почвах составляет от 0,01% для бедных песчаных почв до 0,20% для мощных высокогумусных. В верхних слоя почвы сосредоточено большее количество Р2О5, что связано с его накоплением в зоне отмирания основной массы корней. С глубиной почвы количество Р2О5 уменьшается. Фосфор присутствует в органической и минеральной формах.

Органические фосфаты входят в состав гумуса, при разложении которого он становится доступным растениям.

Некоторые растения усваивают простые фосфорорганические соединения, благодаря их разложению ферментом фосфатазой, выделяющемуся корневой системой. К таким растениям относятся горох, бобы, кукуруза и другие культуры.

Минеральные формы представлены солями кальция, преобладающие в нейтральных и щелочных почвах, фосфатами оксидов железа и алюминия — в кислых. Кальциевые фосфаты более растворимы, а следовательно, более доступны растениям, чем соли алюминия и железа.

Читайте также:  Какие есть способы выращивание картофеля

Основным источником фосфор для питания растений являются соли ортофосфорной (Н3РО4) и метафосфорной (НРО3) кислот. Фосфаты одновалентных металлов, в силу их наибольшей растворимости, наиболее доступны. Однозамещенные (дигидроортофосфаты) кальция и магния менее растворимы, но также хорошо доступными для поглощения. Метафосфаты малорастворимы в воде.

Двухзамещенные соли кальция и магния (гидроортофосфаты) малорастворимы в воде, но хорошо растворимы в растворах слабых кислот, что делает их также доступными для растений, за счет создания корневой системой в ризосфере слабокислой реакции.

Ортофосфаты двух- и трехвалентных металлов нерастворимы в воде, поэтому для большинства растений недоступны. Наиболее приспособленными к усваиванию труднодоступных форм фосфора относятся люпин, гречиха, горчица, люцерна и клевер. В меньшей степени это свойство проявляют горох, донник, эспарцет, конопля, рожь и кукуруза (Э. Рюбензам и К.Рауэ, 1960).

В отличие от азота, из-за слабой подвижности, отсутствуют естественные пути потерь фосфора, равно, как и естественные источники пополнения.

Оптимальным уровнем обеспеченности фосфором в подвижных формах для большинства культур принято считать: для серых лесных и дерново-подзолистых почв (по Кирсанову) — 150-250 мг/кг почвы, для черноземов (по Мачигину) — 45-60 мг/га.

Регулирование содержания фосфора в почве осуществляют главным образом внесением органических и фосфорных удобрений. Для увеличения содержания фосфора в почве на 1 мг требуется в зависимости от гранулометрического состава и типа почвы от 40 до 120 кг P2O5/га.

Содержание в почве и доступность калия

Валовое содержание калия часто превышает содержание азота и фосфора, и определяется гранулометрическим составом. Особенно богаты калием глинистые и суглинистые почвы, где содержание достигает 2-3%. Песчаные, супесчаные и торфяные почвы бедны калием — до 0,1%.

Однако, валовое содержания калия в виду особенностей обменных реакций, не означает достаточного обеспечения им растений, так как только около 1% его валового содержания доступно для растений. Поэтому характеристикой обеспеченности калием является его количество в подвижных формах.

По доступности для растений все соединения калия в почве разделяют на пять групп:

  1. Калий, входящий в состав почвенных минералов алюмосиликатов. Труднодоступная форма калия. Однако некоторое минералы (мусковит, биотит и нефелин) способны трансформировать в доступные форму некоторую часть калия под действием углекислого газа и некоторых органических кислот, выделяющихся корнями растений. Скорость переход калия из необменных в обменные формы зависит от типа почв. Для дерново-подзолистых почв она составляет 15-30 кг/га в год, для выщелоченных черноземов — около 60 кг/га.
  2. Поглощенный, или адсорбционно-связанный почвенными коллоидами, калий является основным источником питания растений. Содержание в почве может быть от 50 до 300 мг на 1 кг почвы. В процессе вегетации растения используют только часть обменного калия, что определяется свойствами почвы, биологическими особенностями растений, погодными условиями и т.д.
  3. Водорастворимые формы калия — наиболее доступная форма. Составляют 10-20% (около 1% по данным Э. Рюбензама и К. Рауэ) обменного калия. По данным МСХА в неудобренной дерново-подзолистой почве в течение весенне-летнего периода содержание водорастворимых форм калия составляло 1,5-5 мг/кг почвы. Он образуется в результате химического и биологического воздействия на минералы. Частично переходит в водорастворимую форму из обменного состояния в результате вытеснения из почвенного поглощающего комплекса, а также от удобрений.
  4. Биогенно связанный калий, то есть входящий в состав биомассы почвенных бактерий, растительных остатков и биоты. Его доля может достигать, например, в дерново-подзолистых почвах 40 кг К2О на 1 га. В доступную форму переходит только после отмирания и минерализации остатков.
  5. Калий, фиксированный почвой. Калий может закрепляться в минеральной части почвы в необменном состоянии. Процесс протекает наиболее активно в условиях переменного смачивания и подсыхания почвы и преобладает в почвах тяжелого гранулометрического состава, содержащих глинистые минералы монтмориллонит и гидрослюды, которым характерна внутрикристаллическая адсорбция катионов, в отличие от каолинита.

Закрепление калия в необменную форму интенсифицируется в щелочной среде, преобладает в солонцах. Черноземы фиксируют калий в большей степени, чем дерново-подзолистые почвы.

Почвы обладают определенным пределом фиксации калия из удобрений: для дерново-подзолистых он редко превышает 200 кг/га, для черноземов может достигать 300-700 кг К2О на 1 га. Использование калийных удобрений позволяет достичь полного насыщения емкости фиксации калия.

Оптимальным содержанием обменного калия в почве, при котором наблюдается максимальная урожайность культур, составляет для дерново-подзолистых и серых лесных почв — 170-225 кг/га.

В основных подтипах черноземов оптимальным содержанием подвижного калия в зависимости от почвы, культуры и метода определения составляет по Чирикову от 130 до 200 мг/кг, по Мачигину — до 400 мг/кг.

Источник

Adblock
detector