О влажности, требуемой растениям и влагоемкости почвы
Для нормального роста растениям нужна вода. Основное количество воды растения берут из почвы. За тысячелетия выращивания различных культур накопилось понимание, какой культуре какая влажность нужна. Однако, только с возникновением научной агрономии этот накопленный опыт был систематизирован и выражен в цифрах и методах, которые может каждый повторить и получить такой же результат, вне зависимости от субъективных ощущений.
Итак, растениям нужна вода. Определить количество воды в почве довольно просто, если вы располагаете временем. Этот метод называет выпариванием. Для этого надо взять порцию грунта, точно его взвесить, после чего хорошо прогреть на умеренной температуре, например, 60-80 градусов, и снова взвесить. Разность веса и будет испарившаяся вода. Например, было 130 грамм, стало 100 грамм, значит 30 грамм была вода и абсолютная влажность грунта составляла 30г/100г = 30%.
Это старый и надежный способ, однако он не очень удобный, так как занимает много времени и требует энергии на выпаривание.
Есть надежные и точные профессиональные механизмы (тензиометры) для быстрого определения влажности, но их стоимость слишком высока для обычного огородника.
Как альтернатива дорогим устройствам повсеместно доступны дешевые измерители влажности почвы, которые надо втыкать в грунт, и они показывают какое-то абстрактное число. О таком устройстве пойдет речь ниже, а пока продолжим с теоретической частью.
Знание абсолютной влажности (далее АВ) грунта малополезно, так как никакое растение не сможет забрать всю влагу из грунта вплоть до 0% АВ. А до какого уровня АВ растения могут забирать воду из грунта зависит от его состава, структуры и других факторов. Поэтому, чтобы свести это все общим понятиям было введено понятие влагоемкости. Причем не одной влагоемкости, но несколько разных ее видов. Мы не будем рассматривать все. Рассмотрим две основные и это будет достаточно хорошим приближением, чтобы можно было принимать решение о поливе.
Полная влагоемкость — количество воды в почве, которую залили так, что воздуха в ней не осталось, а дальнейшую воду она удерживать более не может (вода стекает). Здесь информация о ней только для справки, практической ценности для нас не имеет, хотя, в некоторой литературе по выращиванию культур указана влажность почвы в процентах от полной влагоемкости. Наименьшая влагоемкость (НВ, она же общая влагоемкость — ОВ) – это то количество воды, которое почва удерживает, условно, не превращаясь в болото. Научное определение более точное, но для практики огородника лучшее понимание дает такое просто объяснение.
В советской литературе часто можно встретить влажность в % ППВ (полной полевой влажности). В ППВ учитываются некоторые эффекты почвы, но полученное значение мало отличается от НВ, поэтому простому огороднику вполне можно использоваться значение НВ.
Теперь, если подумать, то понятно, что разные виды почв при одной и той же абсолютной влажности будут иметь разную НВ (сравните суглинок и супесью). Для растений же максимальной точкой увлажненности почвы как раз и является наименьшая влагоемкость, так как большая влажность уже не дает возможность дышать корневой системе, т.е. продолжительная жизнь растения невозможна, кроме каких-то особенный культур.
По этой причине, когда в литературе или в справочниках указывают влажность почвы для какого-то растения, то имеют ввиду влажность в процентах от общей влагоемкости.
Поясню на примере.
Предположим абсолютная влажность 10%. Полученная наименьшая влагоемкость составила, например, 260 грамм на 1 кг почвы. Рассчитаем влажность почвы в процентах от НВ.
10% абсолютной влажности означают отношение воды к сухой почве составляет 0.1.
В/СП=0.1
Но, для 1 кг (берем 1 кг, так как для него рассчитаны данные по НВ, это удобно для сравнения)
В+СП=1 кг
Получаем
(1-СП)/СП=0.1
1-СП=0.1СП
1.1СП=1
СП=1/1.1
СП=0,91
В=0,091
Итак, воды в этом грунте содержится 91г на 1000г.
91г/260г=0,35=35% НВ
Влажность грунта по наименьшей влагоемкости составляет всего 35%. Это очень низкое значение и редкое растение сможет нормально развиваться в таких условиях. Например, для картофеля требуется влажность в диапазоне 60-80%
Как же определить наименьшую влагоемкость? Это можно сделать довольно легко с вполне приемлемой точностью, но это займет пару дней.
Наберите 2-3 кг почвы в емкость и хорошо просушите ее в духовке при температуре 60-100 градусов в течение дня, перемешивая каждые пару часов. И оставьте в духовке остывать до следующего утра. Вы получите почву почти с нулевой абсолютной влажностью.
Найдите емкость объемом минимум 1-2л, в которой вы сможете сделать снизу отверстие. Сделайте в нем отверстие около 5мм. Засыпьте туда сухую почву (лучше целое число килограммов). Почва не должна высыпаться через отверстие. Если это происходит, то надо положить на него мелкую сетку. Уплотните почву в этой емкости, но без фанатизма. Равномерно заливайте воду, пока она не начнет литься из отверстия снизу. Дайте почве постоять минут 30, чтобы она вся пропиталась равномерно. Еще пролейте и дайте всей лишней воде уйти через отверстие. После того, как вода прекратит капать из отверстия, пересыпьте и взвесьте мокрую почву, чтобы определить сколько воды смогла удержать почва.
Например, у вас было 500 г почвы в начале, стало 630. Значит почва удержала 130 грамм и общая влагоемкость составила 260г на 1 кг почвы.
Влагоемкость почвы меняется очень медленно и если вы не вносили значительных количеств органики, то в течение сезона она будет стабильной. Поэтому достаточно один раз измерить ее в начале сезона и у вас будет точка отчета для всех измерений до следующего года.
Теперь, о том, как ускорить измерения влажности почвы.
Я купил дешевый прибор 3 в 1 на али экспрессе: https://aliexpress.ru/item/32900387780.html
По заявлению производителя он умеет измерять влажность, освещенность и PH.
На самом деле он измеряет только освещенность и проводимость почвы. Освещенность он измеряет в «попугаях», но их можно откалибровать по люксметру.
Измерение PH насколько сложная задача, что он в принципе не способен это сделать. Для этого покупайте обычные лакмусовые бумажки – лучше способа в домашних условиях нет.
А вот влажность его можно заставить измерять в адекватных единицах, есть провести калибровку для конкретной почвы.
Я снял видео, о том, как провести калибровку этого измерителя и подобных ему:
После проведения калибровки, вы сможете быстро получать примерное значение абсолютной влажности для почвы, по которой проводилась калибровка.
Если у вас есть датчик влажности для ARDUINO, то вы можете откалибровать его подобным же образом и тогда полив станет очень точным под требования растения.
Примеры измерений откалиброванным прибором показаны в этом видео
Проанализируем результаты замеров.
Рекомендуемая влажность почвы для картофеля 60-80%. Если мы знаем, что НВ это 260г на 1 кг почвы, 80% от 260 это 208г воды на 1кг и это 208/1000=20% абсолютной влажности. 60% НВ это 16% АВ. Таким образом, для картофеля на этих конкретных почвах требуется АВ от 16% до 20%, что эквивалентно показаниям на приборе от 5 до 9.
Для картофеля при НВ 20% рост останавливается, а при более 80% начинается гниение.
В показанном примере в наиболее сухих местах прибор показал значение 2, что соответствует примерно 10% АВ. 20% НВ это 5% АВ, так что рост еще не остановился, но воды уже критически мало и ожидать большой урожай без полива не приходится. Урожай особенно сильно пострадает, если полив не будет произведен в момент интенсивного роста клубней.
Для огурцов рекомендуемый диапазон 75-90%. Прибор показал 7. Это примерно 16-20%. 75% НВ это 20% АВ. Таким образом, на следующий день после полива у посаженных огурцов влажность грунта была на минимальном допустимом уровне.
В теплицах под помидорами показания приборы были 4-6, что означает 15-20% АВ. Для томатов рекомендуется около 80% НВ, что для этой почвы эквивалентно 20% АВ. Казалось бы, томаты политы автоматической системой нормально. Однако, здесь надо внести поправку на грунт. В теплицах грунт несколько другой, более насыщен органикой, поэтому его значение НВ должно быть больше, а значит и влажно по НВ скорее всего окажется ниже 20%. Поэтому полив был увеличен. Но правильным было бы провести отдельную калибровку для этого грунта.
Дальнейший рост растений и урожай подтвердил все указанные измерения. Таким образом, даже дешевый и неточный инструмент при должной калибровке может быть надежным подспорьем в уходе за растениями.
Источник
ОПРЕДЕЛЕНИЕ ВЛАГОЁМКОСТИ ПОЧВЫ
Под полной влагоемкостью почвы понимают то количество воды, которое способна удержать данная почва. Определение полной влагоемкости почвы необходимо при постановке опытов с почвенными культурами. Эта работа складывается из двух задач: 1) определения влажности почвы; 2) определения ее влагоемкости.
Для определения влажности почвы в металлический или стеклянный весовой стаканчик (с известным весом) берется навеска почвы и высушивается в сушильном шкафу при температуре 100-150° С в течение примерно 6 часов. После этого стаканчик с почвой ставят в эксикатор, где он остывает, а затем взвешивают. После первого взвешивания высушивание продолжается в течение часа, затем стаканчик с почвой взвешивают еще раз. Если вес стаканчика с почвой не изменился, то после второго взвешивания делают соответствующие расчеты. Во многих случаях двукратного высушивания почвы бывает вполне достаточно. В противном случае необходимо продолжить сушку до постоянного веса. Ниже приводим пример расчета влажности почвы.
Определение влажности почвы (вес в г)
Вес бюкса | Вес бюкса с почвой | Вес почвы | Вес бюкса с почвой после высушивания | Убыль в весе (кол-во воды) | Кол-во воды в % | ||
1 | 2 | 3 | |||||
22,55 | 28,55 | 6,00 | 27,50 | 27,47 | 27,47 | 1,08 | 18,0 |
Количество воды расчитывают в процентах к весу почвы:
Вычисленный процент воды заносится в последнюю графу вышеприведенной таблицы.
Для определения влагоемкости употребляют цилиндры с сетчатым дном, впаянным на 1 — 2 см выше нижнего края цилиндра. Диаметр цилиндра 5-6 см, высота 15-18 см.
Можно брать стеклянные трубки, обвязанные с одного края марлей. Перед тем как насыпать землю в цилиндр, на дно его кладут кружок из полотна или фильтровальной бумаги и цилиндр со смоченным кружком взвешивают; затем в него берут навеску анализируемой почвы. После этого цилиндр помещают в чашку с водой ( под цилиндр подкладывают стеклянные палочки, чтобы дать свободный доступ воде ко дну цилиндра ). Нужно следить за тем, чтобы уровень воды в чашке не был ниже дна цилиндра, но и не стоял высоко. В первом случае почва не будет смачиваться, а во втором — нижний слой будет перенасыщаться водой. Цилиндр сверху покрывают стеклянным колпаком для создания пространства, насыщенного порами воды. Когда почва будет смочена до самого верха, цилиндр вынимают из чашки, ставят на полотенце или фильтровальную бумагу для удаления излишков воды и затем взвешивают.
Взвешивание обычно производят через 48 часов после закладки опыта. После этого цилиндр снова ставят в чашку с водой и через 2 часа производят вторичное взвешивание. Если вес цилиндра с почвой не изменился, то принимают полученную цифру, в противном случае продолжают насыщение почвы водой до постоянного веса. Расчёты для определения влагоемкости почвы производят следующим образом.
Определение влагоёмкости почвы (вес в г)
Вес ра | Вес цилиндра с почвой | Вес почвы | Вес цилиндра с почвой, насыщенной водой | Прибыль в весе (кол-во поглощ. воды) | Кол-во поглощ. воды в % | ||
1 | 2 | 3 | |||||
127,32 | 358,52 | 231,2 0 | 409,37 | 409,36 | 409,38 | 50,86 | 22 |
Количество поглощённой воды определяют в процентах к весу взятой почвы. Вычисленный процент заносят в соответствующую графу таблицы.
Далее определяют общую (полную) влагоёмкость почвы. Она равняется проценту воды, уже содержащейся в почве (см. табл. 1), и проценту воды, поглощённой почвой (см. табл. 2), т.е. 18+22=40(%).
Общая (полная) влагоёмкость рассчитывается на абсолютно сухую почву. Пример соответствующих расчетов приводится ниже.
Определение количества абсолютно сухой почвы в 100 г данной почвы: 100,0-18,0=82,0 (г).
Определение влагоёмкости в 100 г абсолютно сухой почвы:
Обычно при поливе растений поддерживают влажность почвы на уровне 60-70% от полной влагоёмкости. Ниже мы даем соответствующие расчёты.
Определение количества воды на 100 г абсолютно сухой почвы при 60% от полной влагоёмкости:
Определение полной влагоёмкости почвы, а также оптимальной влажности (60-70% от полной влагоёмкости) необходимо для расчётов количества поливной воды в работе с почвенными и песчаными культурами.
Источник
ПОЧВЕННО-ГИДРОЛОГИЧЕСКИЕ КОНСТАНТЫ
Перечисленные формы влаги не являются постоянными по количественному содержанию воды и изменяются в зависимости от уровня влажности почвы. В практике для оценки почв и для почвенно-гидрологических расчетов пользуются константными категориями, постоянными для каждой почвы и ее горизонтов.
Почвенно-гидрологическими константами называют граничные значения влажности, при которых количественные изменения в подвижности и свойствах воды переходят в качественные.
Максимальная гигроскопичность (МГ) — максимально возможное содержание в почве гигроскопической воды. Соответствует уровню влажности, когда почва полностью насыщена из атмосферы с относительной влажностью воздуха 94–99%. Глинистые почвы характеризуются величинами МГ 12—20%, суглинистые — 6—12%, легкие почвы — менее 6% от веса. Вода в состоянии максимальной гигроскопичности недоступна растениям. Это «мертвый запас влаги».
Влажность завядания растений (ВЗ) или коэффициент завядания — уровень влажности в почве, при котором начинается устойчивое завядание растений. Влажность завядания служит нижней границей продуктивной влаги. Ее определяют непосредственно, фиксируя влажность почвы, при которой растения начинают завядать. Используются также величины максимальной гигроскопичности:
где МГ — максимальная гигроскопичность; К — коэффициент завядания, зависящий от растения и типа почвы. В среднем К = 1,50 для тяжелых почв и 1,25 — для легких.
Влажность разрыва капилляров (ВРК). Капиллярно-подвешенная вода при испарении передвигается в жидкой форме к испаряющей поверхности в пределах всей промоченной толщи по капиллярам, сплошь заполненным водой. Но при определенном снижении влажности, характерном для каждой почвы, восходящее передвижение этой воды прекращается или резко затормаживается. Потеря способности к такому передвижению объясняется тем, что в почве при испарении исчезает сплошность заполнения капилляров водой, т. е. в ней не остается систем пор, сплошь заполненных влагой и пронизывающих промоченную часть почвенной толщи. Эта критическая величина влажности названа влажностью разрыва капиллярной связи (ВРК). При этом вода неподвижна, но физиологически доступна растениям.
ВРК называют также критической влажностью, так как при влажности ниже ВРК рост растений замедляется и их продуктивность снижается. В почвах и грунтах эта величина варьирует довольно сильно, составляя в среднем около 50—60% от наименьшей влагоемкости почв. На содержание воды, соответствующей ВРК, помимо гранулометрического состава почв, существенное влияние оказывает их структурное состояние. В бесструктурных почвах запасы воды расходуются на испарение значительно быстрее, чем в почвах с агрономически ценной структурой. Поэтому в них влажность будет быстрее достигать ВРК, т. е. обеспеченность влагой растений снижаться будет быстрее.
Максимальная молекулярная влагоёмкость почвы (ММВ). Максимальная молекулярная влагоёмкость почвы (ММВ)характеризует область перехода (является границей) между плёночной рыхло связанной и капиллярной свободной водой (Воронин, 1984, 1986). Величину ММВ определяют, подвергая насыщенный водой до тестообразного состояния образец почвенного горизонта давлению в 1 мПа. Кроме того, имея данные о ММВ, мы можем с достаточной степенью точности получить и такую важную характеристику почвы, какой является её удельная поверхность:
Sуд = 3, 6232×ММВ, м 2 /грамм.
Наименьшая влагоемкость (НВ) — максимально возможное количество влаги в почве, которое остается в ней после оттока гравитационной воды. При глубоком залегании грунтовых вод НВ – это максимально возможное содержание капиллярно подвешенной влаги. НВ изменяется в различных почвах в довольно широких пределах: от 5 до 10% от массы у легких почв до 55% у некоторых тяжелых почв. Полевую влагоемкость не следует путать с полевой влажностью, которая представляет количество воды в почве определяемое в конкретный момент.
НВ является важнейшей почвенно-гидрологической величиной, характеризующей способность почвы накапливать влагу и удерживать её в поле действия гравитационных сил.
Полная влагоемкость (ПВ)— это влажность, при которой все поры почвы заполнены водой, т. е. полная водовместимость почвы.
Анализ гидрологических констант позволяет оценивать количественно запасы продуктивной влаги в почвах. Обычно это вода, находящаяся в пределах двух констант — от ВЗ до НВ.
Влажность почвы, ее влагоемкость и константы выражают в процентах от массы почвы, или в процентах от объема, что удобно сопоставлять с объемом почвенных пор, учитывая, что плотность воды равна единице. Выражается влагоемкость также в кубических метрах на гектар. В данном случае ее удобно сопоставлять с нормами орошения. Кроме того, количество воды в почвах часто рассчитывают в миллиметрах, что дает возможность сравнивать количество почвенной влаги с атмосферными осадками и объемом воды на определенной площади (1 мм равен 10 м 3 воды на 1 га).
Важной характеристикой водных свойств почвы является ее водопроницаемость. Водопроницаемость — способность почвы воспринимать и пропускать через себя объем воды в единицу времени через единицу поперечного сечения почвы. Различают две стадии водонепроницаемости — впитывание и фильтрацию. Если поры почвы лишь частично заполнены водой, то при поступлении воды наблюдается ее впитывание в толщу почвогрунта; когда почвенные поры полностью насыщены водой, происходит фильтрация воды, т. е. движение в условиях сплошного потока жидкости.
В природе чаще наблюдается движение влаги при неполном насыщении пор водой. Фильтрация может проявиться лишь при выпадении большого количества осадков, бурном снеготаянии или при орошении большими нормами.
Водопроницаемость зависит от пористости почв, их гранулометрического состава, структурного состояния. Пески быстро фильтруют воду, а глины медленно. Структурный глинистый чернозем хорошо водопроницаем, а глыбистый бесструктурный солонец практически является водоупором.
Н.А. Качинским предложена градация почв по водопроницаемости. Если почва пропускает за час 1000 мм воды, водопроницаемость считается провальной, от 1000 до 500 мм — излишне высокой, от 50С до 100 — наилучшей, от 100 до 70 — хорошей, от 70 до 30 — удовлетворительной; менее 30 мм – неудовлетворительной.
Коэффициент фильтрации.Коэффициент фильтрации (Kf) определяют на компрессионно-фильрационном приборе из полевой лаборатории Литвинова или с использованием монолитов. Это количество воды профильтровавшееся через слой почвы единичной длины единичной площадью сечения потока в единицу времени при единичном напоре.
Отметим лишь, что при лабораторных определениях величины НВ на почвенных монолитах время, необходимое для полного стекания гравитационной влаги (а следовательно, и время определения НВ), будет зависеть от величины коэффициента фильтрации (Kf ) исследуемого горизонта почвы, что учтено в таблице 7.
Зависимость времени определения величины НВ от значений коэффициента фильтрации почвенного горизонта.
Kf, см/сек | Время определения НВ при высоте образца в см | |
1×10 -2 | 3 — 5 мин | 15 — 20 мин |
1×10 -3 | 35 — 40 мин | 1,5 — 2 часа |
1×10 -4 | 5,5 — 6 часов | 24 часа |
1×10 -5 | 48 — 50 часов | 9 суток |
1×10 -6 | 20 суток | — |
Категории влаги и почвенно-гидрологические константы (по Роде):
МАВ – максимальная адсорбированная влага, МГ – максимальная гигроскопическая влага, ВЗ – влажность завядания, ВРК – влажность разрыва капилляров, НВ – наименьшая влагоемкость, ПВ – полная влагоемкость.
Источник