Азотная промышленность и производство удобрений в России
Основными сферами деятельности современной азотной промышленности России, основы которой были заложены в 1927 году с запуском Чернореченского химического завода, являются:
- получение водорода методом паровой конверсии (риформинга) метана и природного газа,
- производство аммиака и азотной кислоты,
- выпуск на их основе комплекса азотных удобрений.
К числу последних из перечисленных продуктов азотной отрасли относятся органические и неорганические соединения, имеющие в своём составе азот, а именно:
- мочевина (карбамид) и цианамид кальция – амидные удобрения;
- аммофос и диаммофос, хлористый аммоний, сульфат, сульфид и карбонат аммония – удобрения аммиачные;
- калиевая, кальциевая и натриевая селитры – нитратные удобрения;
- аммиачная и известково-аммиачная селитры – аммиачно-натриевые удобрения.
Кроме того, аммиак, являющийся важнейшим сырьём для химической промышленности (общемировая выработка его составляет свыше 180 млн т в год) и получаемая из него азотная кислота являются главными компонентами в деле производства взрывчатых веществ, серной кислоты, соды, растворителей.
История технологий
Продолжительное время источником получения селитры (комплекса минералов, имеющих в своём составе аммоний и нитраты группы щелочных и щелочноземельных металлов), служащей в качестве сырья для получения аммиака, а из него – азотной кислоты; являлись месторождения в Чили и Индии. А также простейшие технологии на основе использования органических отходов флоры и фауны, с добавлением ряда горных пород и строительного мусора. Интереснейший исторический факт: Видный французский учёный Гаспар Монж сумел-таки в момент блокады и вызванного ею экономического кризиса, обеспечить революционные силы Французской республики порохом. А произошло это посредством переработки отбросов и навоза под воздействием бактерий.
Долго так продолжаться не могло. Залежи селитры быстро истощались. А переработка мусора мало что давала. Мировая научная общественность пребывала в сильном затруднении в связи с грядущей проблемой отсутствия удобрений для нужд растениеводства, грозящей тотальным голодом. Но целый ряд проведённых крупнейшими европейскими учёными исследований, привёл в начале XX-го века к осуществлению синтеза аммиака, положенного в основу функционирования современной азотной промышленности.
Роль азота в жизни растений
В это же самое время крупнейший специалист в области агрохимии – российский академик Д. Н. Прянишников проанализировав международный опыт земледелия, приходит к выводу о важности обеспечения культурных растений азотом. Впоследствии жизнь подтвердила его умозаключения.
Сейчас из 214 млн т производимых в мире удобрений 57% падает на долю азотных. 24% – на фосфорные, остальное – на калийные. Развивающиеся страны мира: Китай, Индия, Индонезия, Бразилия быстрыми темпами наращивают их выпуск. Ситуация такова, что лидирующие позиции по выпуску азотных удобрений удерживают:
Список крупнейших экспортёров возглавляют:
- Россия – 9,1 млн т,
- Китай – 7,2 млн т,
- Нидерланды – 2,6 млн т.
А всё потому, что азот является важнейшим химическим элементом живой клетки. Входя в состав белков, хлорофилла, нуклеиновых кислот, ферментов, фосфатидов, витаминов, алкалоидов, он активно воздействует на процессы фотосинтеза и обмена веществ, запуская, регулируя и ускоряя рост и развитие самих растений. Его недостаток или отсутствие приводит к замедлению процесса созревания плодов, подверженности болезням, вплоть до полного прекращения роста и гибели самих растений.
Производство удобрений
Две третьих изготавливаемых и употребляемых азотных удобрений (в 2019 году их было выпущено 23,95 млн т) в нашей стране составляют аммиачная селитра и мочевина. Раннее для их производства применялся коксовый газ, что обуславливало привязку предприятий к объектам металлургической отрасли. Сегодня активнее используется газ природный, обеспечивая тем самым взаимодействие с нефтегазовой промышленностью.
Процесс получения аммиака заключается в синтезе его молекул из азота и водорода при повышенном давлении и температуре, проходящем при участии железного катализатора. Азот извлекают из воздуха, а водород является результатом восстановления воды из природного газа, имеющего в своём составе значительное количество метана.
В зависимости от необходимости получения того или иного продукта, последующая технология будет выглядеть следующим образом:
- Аммиачная селитра – реакция нейтрализации азотной кислоты под воздействием аммиака.
- Мочевина – процесс взаимодействия аммиака и углекислого газа.
- Сульфат аммония – итог протекания аммиачного газа сквозь раствор серной кислоты.
И это лишь малая часть технологических особенностей производства, предназначенного для удовлетворения потребностей агропромышленного комплекса. Структуры призванной обеспечить сельскохозяйственной продукцией жителей страны в необходимом объёме – выполнить продовольственную программу. Для осуществления столь важной задачи требуется дальнейшее развитие азотной промышленности, нацеленное на значительное увеличение выпуска азотных удобрений (снижающее импортную зависимость), как одного из приоритетных направлений российской экономики.
Источник
Производство азотных удобрений
Виды удобрений и их значение
Удобренияминазываются вещества, содержащие элементы, необходимые для питания растений и вносимые в почву с целью получения высоких устойчивых урожаев.
Удобрения классифицируют но ряду признаков.
По происхождению удобрения подразделяются на минеральные, органические, органоминеральные и бактериальные.
К минеральным, или искусственным, удобрениям относятся специально производимые на химических предприятиях преимущественно неорганические вещества, в основном минеральные соли.
Органическиеудобрения содержат питательные вещества главным образом в виде органических соединений, обычно ‑ продуктов естественного происхождения (навоз, фекалии, солома, торф и др.).
Органоминералъныеудобрения представляют собой смеси различных органических и минеральных удобрений.
Бактериальные удобрения содержат некоторые культуры микроорганизмов, способствующие накоплению в гумусовом слое (почве) усвояемых форм питательных элементов.
По составу, т.е. по видам питательных элементов, минеральные удобрения подразделяются на азотные, фосфорные (фосфатные), калийные (калиевые) и микроудобрения (магниевые, борные и др.).
По содержанию главных питательных элементов удобрения бывают простые (один главный питательный элемент) и комплексные (два или три элемента).
По числу главных питательных элементов комплексные удобрения называются двойными (NP, PK, NK) и тройными (NPK).
При содержании питательных веществ более 33 % удобрения называются концентрированными, более 60 % ‑ высококонцентрированными.
По назначению и срокам внесения удобрения подразделяются на основные (предпосевные), вносимые до посева; припосевные, вносимые во время посева; подкормки, вносимые в период развития растений (в вегетационный период).
По степени растворимости удобрения бывают водорастворимые и водонерастворимые.
Состав минеральных удобрений характеризуется содержанием в них активных веществ: в азотных ‑ азота (N), в фосфорных ‑ оксида фосфора (Р2O5), в калийных ‑ оксида калия (К2О).
Производство азотных удобрений
Промышленностью выпускаются следующие виды азотных удобрений: аммиачные, содержащие азот в виде катиона NH 4+ , нитратные, содержащие азот в виде аниона NO 3- , аммиачно-нитратные, содержащие оба иона, и амидные, азот в которых находится в форме NH2. По агрегатному состоянию азотные удобрения бывают твердые (например, карбамид) и жидкие (аммиак, аммиачная вода и аммиакаты, представляющие собой растворы твердых удобрений).
Наиболее распространенными из азотных удобрений являются аммиачная селитра (нитрат аммония) NН4NO3 и карбамид (мочевина) (NH2)2CO. Эти удобрения, как и все аммиачные и нитратные соли, водорастворимы и хорошо усваиваются растениями, однако легко уносятся вглубь почвы при обильных дождях или орошении.
Аммиачная селитра(нитрат аммония) NН4NO3 является безбалластным удобрением, содержащим до 35 % азота в аммиачной и нитратной формах. Это удобрение можно использовать для любых сельскохозяйственных культур и почв. Однако нитрат аммония имеет и некоторые недостатки: его гранулы сильно гигроскопичны и поэтому расплываются на воздухе, слеживаются при хранении в крупные агломераты, трудно вносимые в почву. Кроме того, NН4NO3 огне- и взрывоопасен, что также осложняет его применение в качестве удобрения.
Технологический процесс производства аммиачной селитры включает следующие стадии:
« нейтрализацию разбавленной азотной кислоты аммиаком (NH3);
• упаривание раствора нитрата аммония;
• кристаллизацию нитрата аммония;
• гранулирование и охлаждение плава;
• рассев гранул на товарные фракции.
Нейтрализация осуществляется в специальном реакторе ‑ нейтрализаторе, откуда разогретый раствор NН4NO3 (реакция нейтрализации идет с выделением тепла) поступает в вакуум-выпарной аппарат, где на выходе получается плав с содержанием NН4NO3 98‑99 %. Плав поступает в верхнюю часть грануляционной башни, где разбрызгивается через специальное приспособление ‑ форсунку. Капли селитры, падая вниз, застывают в потоке подающегося снизу холодного воздуха и образуют гранулы, которые поступают на дополнительное охлаждение и затем рассеиваются на фракции. Частицы менее 1 и более 3 мм присоединяются к раствору, идущему на выпаривание. Готовый продукт (частицы размером 1‑3 мм) упаковывается в водонепроницаемые мешки.
В структуре себестоимости аммиачной селитры удельный вес различных элементов затрат следующий: сырье и основные материалы ‑ 85 %, вспомогательные материалы ‑ 5, энергия ‑ 5, зарплата ‑ 0,3, прочие расходы ‑ 4,7 %.
Карбамид(NН2)2CO относится к ценным азотным удобрениям, содержащим до 46 % азота. Его применяют также как азотную добавку в корм скоту. Высокая концентрация азота, ценные физико-химические свойства, малая слеживаемость, низкие расходы на хранение и транспортирование сделали карбамид основным азотным удобрением.
Сырьем для производства карбамида являются аммиак и диоксид углерода СО2.
Технологический процесс производства карбамида включает следующие стадии:
• упаривание раствора карбамида до плава;
• кристаллизация или гранулирование плава;
• фильтрация кристаллов (в случае кристаллизации);
• рассев гранул на товарные фракции.
В промышленности синтез карбамида осуществляется в две стадии при 100 % -ном избытке аммиака, давлении 18‑20 МПа и температуре 180‑200 °С. Выход карбамида в оптимальных условиях составляет 60‑70 % при использовании чистых СО2 и NH3. В целях улучшения экономических показателей производства не вступившие во взаимодействие аммиак и СО2 используются повторно или для получения других продуктов.
Диоксид углерода, предварительно очищенный от соединений серы и механических примесей, сжимается компрессором до 18‑20 МПа и при температуре 40 ° С непрерывно подается в колонну синтеза. Плунжерным насосом в колонну непрерывно вводится также жидкий аммиак, нагретый до 90 °С. Полученный раствор карбамида упаривается в выпарном аппарате. Затем карбамид либо кристаллизуют в кристаллизаторах и отделяют кристаллы от маточного раствора на соответствующем фильтровальном оборудовании, либо гранулируют в грануляционной башне. Рассев гранул карбамида на товарные фракции осуществляется так же, как и аммиачной селитры.
Для получения 1 т карбамида в среднем расходуется: аммиака ‑ 0,58 т; диоксида углерода ‑ 0,77 т; воды ‑ 90 м 3 ; электроэнергии ‑ 130 кВт- ч; пара ‑ 1,3 т. ;
В структуре себестоимости карбамида удельный вес различных элементов затрат следующий: сырье и основные материалы — 65 % , вспомогательные материалы ‑ 15, энергия ‑ 15,6, Оплата ‑ 0,4, прочие расходы ‑ 4 %.
Источник
Производство азотных удобрений
Производство азотных удобрений – одна из ведущих отраслей сельского хозяйства и химической промышленности России. Это обусловлено не только востребованностью подкормок данного вида, но и относительной дешевизной процесса. Кроме того, азот является приоритетным макроэлементом, обеспечивающим нормальный рост и развитие растительного организма, то есть, внесение азотных удобрений (как и их производство) можно считать первостепенной фермерской задачей.
Роль азота в жизни растений
Азот считается одним из важнейших элементов растительной клетки. Входя в состав нуклеиновых кислот, азот частично отвечает за передачу наследственной информации, выполняя тем самым репродуктивную функцию. Также азот входит в состав хлорофилла, принимая непосредственное участие в процессе обмена веществ.
В случае недостатка азота можно наблюдать следующие симптомы:
- замедление роста – вплоть до полной остановки;
- бледность листьев;
- появление светлых пятен;
- пожелтение листьев;
- мелкоплодие и осыпание плодов.
Острое азотное голодание способно привести к:
- непереносимости низкой температуры в зимний период и, как следствие, отсутствию урожая в последующие сезоны;
- угнетению иммунной системы растений;
- наиболее ослабленных побегов и культуры в целом. Именно поэтому не стоит затягивать с внесением подкормки в случае проявления признаков недостаточного содержания азота в почве.
Азотные удобрения, наиболее часто применяемые в сельском хозяйстве
Аммиачная селитра – характеризуется высоким содержанием азота (до 36%), может использоваться не только для основного внесения, но и в качестве разовых подкормок, эффективна на слабоувлажненных почвах и практически бесполезна на песчаных грунтах, требует безоговорочного соблюдения правил хранения.
Сульфат аммония – удобрение со средним содержанием азота (до 20%), идеально подходит для основного внесения, поскольку хорошо закрепляется в почве, к условиям хранения не требовательно.
Карбамид (мочевина) – содержание азота достигает 48%, обеспечивает качественные результаты в сочетании с органическими удобрениями, подходит для внекорневой подкормки.
Кальциевая селитра – щелочное удобрение, хорошо подходящее для нечерноземной почвы.
Органические азотные удобрения (навоз, птичий помет, торф, компост) применяются весьма активно, однако низкий процент содержания азота и необходимость большого количества времени для его минерализации – существенно снижают эффективность данных удобрений. Плюсом же является низкая себестоимость.
Технология производства азотных удобрений
Производство азотных удобрений базируется на исходном сырье, коим является аммиак. До недавнего времени аммиак получали из кокса (коксового газа), поэтому многие предприятия, специализирующиеся на изготовлении удобрений, располагались в непосредственной близости от металлургических заводов. Более того, крупные металлургические комбинаты практикуют производство азотных удобрений в качестве «попутной» продукции.
На сегодняшний день приоритеты несколько изменились и основным сырьем для удобрений все больше выступает не коксовый, а природный газ. Так что современные производители удобрений дислоцируются вблизи магистральных газопроводов. Также производство азотных удобрений было успешно налажено на основе использования отходов нефтепереработки.
Технология производства азотных удобрений в химической промышленности не считается сложной, однако для обывателя ее нюансы понятны далеко не всегда. Если максимально упростить детали процесса, то выглядеть все будет примерно так: через генератор с горящим коксом пропускается поток воздуха, полученный в результате азот смешивается с водородом в определенной пропорции (при этом крайне важны значения давления и температуры), что дает на выходе необходимый в производстве удобрений аммиак.
Дальнейшие детали процесса привязаны к конкретному виду удобрения: изготовление нитрата аммония (аммиачной селитры) основано на нейтрализации азотной кислоты аммиаком, производство карбамида (мочевины) подразумевает взаимодействие аммиака с углекислым газом при определенной температуре и давлении, сульфат аммония образуется при пропускании аммиачного газа через раствор серной кислоты.
Уже определились со стилем? Закажите проект под ключ в компании «Лэнд» и осуществите свою мечту
Источник