Меню

Производство удобрений химия формула

Минеральные удобрения

Разделы: Химия

Цели урока: продолжать формирование у учащихся представления о веществах и их использовании в жизни человека, развивать практические умения и навыки при работе с этими веществами, умения работать с книгой, записывать химические уравнения. Воспитание бережного отношения к природе, разумного подхода к использованию химических веществ.

Задачи урока: расширять и углублять знания учащихся о соединениях азота, фосфора и калия, применения их в хозяйственной деятельности. Развивать представление о минеральных удобрениях как о химических веществах, умение определять практически фосфорные удобрения среди удобрений других групп, как пример определения фосфат-ионов, умение записывать уравнения химических реакций в молекулярном и ионов виде, подготовиться к выполнению практической работы №5 «Минеральные удобрения».

Оборудование: технические условия: интерактивная доска, проектор, презентация «Минеральные удобрения» (Приложение 3).

Используемое оборудование: необходимая химическая посуда, образцы минеральных удобрений, набор химических реактивов для определения веществ.

1. Организационный момент.

Учитель сообщает о теме урока, задачах урока.

2. Актуализация знаний.

В форме беседы составляется схема и дается определение минеральным удобрениям. Учащиеся заносят схему и записывают определение в тетрадь. (Cлайд 1)

Какие элементы необходимы для роста и развития растений? (Слайд 2)
Все ли они нужны растениям в одинаковых количествах? (Слайд 3)

3. Изучение нового материала.

Учащиеся работают по группам. Каждая группа получает карту с заданиями и отчетом по этим заданиям. Приложение №1.

  1. группа «Азотные удобрения».
  2. группа «Фосфорные удобрения».
  3. группа «Калийные удобрения».
  4. группа «Микроудобрения»

В результате отчета групп на интерактивной доске в презентации заполняется общая таблица «Минеральные удобрения», которую ученики заносят в свою тетрадь. (Слайды 4–5 )

Роль питательного элемента для растений

Примеры удобрений (формула, название)

Стимулируют рост и увеличение зеленой массы растений (стеблей, листьев). Важны в весенний период.

Необходимы при росте репродуктивных органов (цветки, плоды). Важны во время цветения и формирования плодов.

Ускоряют рост фотосинтеза, способствуют накоплению углеводов, укрепляют стебли злаковых растений.

Способствуют синтезу сахара, белков, крахмала, витаминов, нуклеиновых кислот, ферментов.
Сu – способствует росту растений на малоплодородных почвах, повышает устойчивость к засухе, холоду.
Fe – участвует в синтезе хлорофилла.

Микроудобрения в малых дозах применяются на полях в составе минеральных комплексов.

К чему может привести недостаток элементов в почве? – Недостаток минеральных веществ может привести к неполноценному росту и развитию растений и, как следствие, низкому урожаю. (Слайд 6)

К чему может привести избыток минеральных веществ в почве?

  • Накопление элементов в растениях; при употреблении человеком эти элементы накапливаются в организме человека и вызывают отравления.
  • Попадание минеральных удобрений в водоемы, вызывающее изменения в биогеоценозах (зарастание водоемов и гибель водных организмов) Слайд 7-8

Распознавание минеральных удобрений.

Демонстрационный опыт по распознаванию нитрат-иона в минеральных удобрениях. Выполнение лабораторной работы №8 с 141 учебника. В качестве испытываемого минерального удобрения берется заранее приготовленный раствор преципитата. (Слайд 9)

Вывод: Минеральные удобрения – химические вещества, требующие осторожного к себе отношения. Применять минеральные удобрения нужно строго по норме. (Слайд 10)

4. Закрепление изученного материала. (Слайды 11–13)

Выполнение задания в группах.

Из перечня 1-7 выберите ответы на вопросы (I-X). (Номера ответов могут повторяться.)

  1. Относятся к макроэлементам.
  2. Относится к микроэлементам.
  1. Необходим при росте репродуктивных органов.
  2. Ускоряет процесс фотосинтеза.
  3. Стимулирует рост зеленой массы растений.
  4. Принимает участие в синтезе хлорофилла.
  5. Способствует укреплению стеблей злаковых растений.
  1. Можно распознать при помощи иона Ag+ (образуется желтый осадок).
  2. Можно распознать, добавляя раствор щелочи при нагревании (появляется запах аммиака).
  3. Можно распознать при помощи раствора хлорида бария (появляется осадок белого цвета).

Источник

Производство удобрений химия формула

Минеральные удобрения (МУ) — соли и другие неорганические природные или полученные промышленным путем вещества, содержащие в своем составе элементы, необходимые для питания растений и улучшения плодородия почвы, используемые с целью получения высоких и устойчивых урожаев сельскохозяйственных культур.

В образовании тканей растений, в его росте и развитии принимают участие около 70 элементов, которые по их роли могут быть разделены на следующие группы:

  1. элементы-органогены (углерод, водород, кислород, азот);
  2. зольные элементы (фосфор, кальций, калий, магний, сера);
  3. микроэлементы (бор, молибден, медь, цинк, кобальт);
  4. элементы, входящие в состав хлорофилла и различных ферментов (железо, марганец).

Из этих элементов углерод, водород и кислород образуют около 90% массы сухого вещества растения, 8 – 9% составляют азот, фосфор, сера, магний, кальций и калий. На долю остальных элементов, в том числе таких жизненно важных, как бор, железо, медь, марганец и другие, приходится не более 1-2%.

Важнейшее значение для питания растений имеют азот, фосфор и калий, от которых зависят обмен веществ в растении и его рост. Азот входит в состав белков и хлорофилла, принимает участие в фотосинтезе. Соединения фосфора играют важную роль в дыхании и размножении растений, участвуя в процессах превращения углеводов и азотсодержащих веществ. Калий регулирует жизненные процессы, происходящие в растении, улучшает водный режим, способствует обмену веществ и образованию углеводов в тканях растений.

Основную массу кислорода, углерода и водорода растение получает из воздуха и воды, остальные элементы извлекает из почвы. При современных масштабах культурного земледелия естественный кругооборот питательных элементов в природе нарушается, так как часть их выносится с урожаем и не возвращается в почву (таблица. 10.1), а также вымывается из почвы дождевыми водами или переходит в недеятельную форму (иммобилизируется). Например, азот под воздействием микроорганизмов восстанавливается из иона NO3 — до N2 и N2O. При этом, чем выше урожайность, тем больше вынос питательных элементов из почвы.

Таблица 10.1 — Вынос питательных элементов из почвы

Элемент и его соединение

Вынос, кг/га, при урожае

сахарной свеклы 270 ц/га

Это вызывает необходимость в компенсации потерь питательных элементов в почве путем внесения в нее веществ, содержащих эти элементы, то есть минеральных удобрений, что позволяет обеспечить высокие урожаи сельскохозяйственных культур. Так, при внесении в почву полного, то есть содержащего азот, фосфор и калий, удобрения урожай повышается в 1,5 – 3 раза в зависимости от культуры (табл. 10.2).

Таблица 10.2 — Влияние минеральных удобрений на урожайность

Применения МУ, помимо повышения урожайности, увеличивает производительность труда, сокращает себестоимость сельскохозяйственной продукции и улучшает ее качество: повышает содержание сахара в свекле, крахмала в картофеле, увеличивает прочность хлопкового и льняного волокон, морозо- и засухоустойчивость растений.

10.2. Классификация минеральных удобрений

Ассортимент выпускаемых промышленностью МУ весьма многообразен. Они классифицируются по природе питательных элементов, по содержанию и числу питательных элементов, по способам получения и свойствам.

По природе питательных элементов МУ подразделяют на азотные, фосфорные (фосфатные), калиевые (калийные), магниевые (магнезиальные), борные и т.д. Основное место по масштабам производства занимают первые три вида минеральных удобрений.

По числу питательных элементов МУ делятся на простые (однокомпонентные) удобрения, содержащие только один питательный элемент, и комплексные удобрения, содержащие два (двойные типа NP, PK, NK) или три (тройные типа NPK или полные) элемента.

Комплексные МУ подразделяются на сложные, полученные в результате химической реакции, смешанные, представляющие механические смеси, образованные механическим смешением различных простых минеральных удобрений, и сложносмешанные, представляющие комбинацию двух первых типов.

По содержанию питательного элемента среди МУ выделяют неконцентрированные (содержащие менее 33% питательных элементов), концентрированные (содержащие более 33% питательных элементов) и высококонцентрированные (содержащие более 60% питательных элементов) удобрения.

По свойствам минеральные удобрения делятся на твердые, жидкие, порошкообразные, кристаллические, гранулированные, растворимые и нерастворимые.

Усвоение МУ растениями зависит от их растворимости и характера почв, главным образом от рН почвы. Азотные и комплексные минеральные удобрения растворимы в воде. Фосфорные минеральные удобрения по растворимости делятся на водорастворимые (рН=7), цитратно- или лимоннорастворимые, то есть растворимые в слабых органических кислотах (рН ;

  • масса в условных единицах – для планирования производства и поставок МУ (mу). При этом содержание действующих веществ в условной единице принято: в азотных – 0,205 мас. долей N; в фосфорных – 0,187 мас.дол. P2O5; в калийных – 0,416 мас. долей К2O.
  • Эффективность использования МУ существенно зависит от правильного сочетания питательных элементов, вносимых с ними в почву. Соотношение питательных элементов выражают в виде формул их состава, например:

    Уравновешенные минеральные удобрения — удобрения, в которых соотношение питательных элементов соответствует агротехническим требованиям. От правильного использования минеральных удобрений (их «уравновешенности») существенно зависит урожайность зерновых и других сельскохозяйственных культур.

    10.3. Типовые процессы солевой технологии

    Большинство МУ представляет различные минеральные соли или твердые вещества с подобными солям свойствами. Технологические схемы производства минеральных удобрений весьма разнообразны, но в большинстве случаев складываются из одних и тех же типовых процессов, свойственных солевой технологии, цель которой – разделение сложных систем, состоящих из нескольких солевых компонентов.

    Переработка минерального сырья в соли (и в минеральные удобрения) может идти или его высокотемпературной обработкой, или «мокрым» путем в жидких средах и суспензиях. В соответствии с этим, помимо обычных процессов подготовки сырья к переработке (измельчение, классификация ,обогащение, сушка), в солевой технологии особое значение имеют два типа процессов:

    • термическая или термохимическая обработка, то есть различные виды обжига сырья или шихты;
    • растворение и перекристаллизация веществ, связанные с их химической обработкой, разделением и очисткой растворов от примесей.

    10.3.1. Обжиг

    Обжиг — процесс термической обработки материалов, заключающийся в нагреве их до заданной температуры, выдержке при этой температуре и охлаждении. При обжиге, в зависимости от условий процесса, протекают реакции термического разложения, окисления или восстановления, образования и полиморфных превращений минералов. В соответствии с протекающими при обжиге химическими превращениями различают:

    • кальцинационный обжиг ( кальцинация ) – удаление из вещества летучих компонентов, чаще всего оксида углерода (IV) и конституционной воды, например:
      • обжиг известняка: CaCO3 = CaO + CO2,
      • дегидратация гидроксида алюминия до его оксида: 2Al(OH)3 = Al2O3 + 3H2O;
    • окислительный обжи г, в результате которого повышаются степени окисления элементов, например: 2FeO + O2 = 2Fe3O4 или превращение сульфида в оксид: CuS + 1,5O2 = CuO + SO2;
    • восстановительный обжиг , в результате которого понижаются степени окисления элементов, например, получение элементарного фосфора: Ca3(PO4)2 + 5C + 3SiO2 = P2 + 5CO + 3CaSiO3.

    Частный случай обжига – спекание сырья с какими-либо реагентами с целью образования растворимых, извлекаемых из сырья продуктов, например, спекание фторапатита с содой:

    Обжиг и спекание представляют собой гетерогенные процессы, в которых реакции протекают в системах «Т + Т», «Ж + Ж» и «Т + Г», где газообразная и жидкая фазы образуются за счет диссоциации и плавления твердой фазы. Поэтому скорость процессов обжига и спекания зависит как от скорости химической реакции, так и скоростей возгонки, плавления и диффузии твердых, жидких и газообразных веществ через фазы, образованные реагирующими компонентами и продуктами их взаимодействия.

    Скорость процессов обжига и спекания может быть увеличена за счет повышения температуры, измельчения компонентов обжигаемого материала, повышения их концентрации, перемешивания и создания условий, при которых один из компонентов будет находиться в жидком и газообразном состоянии.

    10.3.2. Растворение и выщелачивание

    Растворение твердого тела — процесс разрушения его кристаллической структуры под воздействием растворителя с образованием гомогенной системы – раствора.

    Растворение может быть физическим, когда возможна обратная кристаллизация растворенного вещества из раствора по схеме

    и химическим, когда растворитель или содержащийся в нем реагент химически взаимодействует с растворяемым веществом и делает невозможным его обратную кристаллизацию, то есть по схеме

    • где: A — растворяемое вещество; Р — растворитель; В-новое вещество, образовавшееся в результате растворения.

    Очевидно, что процесс химического растворения, в отличии от процесса физического растворения, является необратимым.

    Растворение представляет гетерогенный некаталитический процесс, протекающий в системе «Т + Ж» в диффузионной области.

    Процесс растворения ускоряется при повышении температуры, измельчении твердой фазы, перемешивании и увеличении концентрации. В случае физического растворения движущей силой процесса является разность концентраций , поэтому скорость его определяется уравнением

    • (10.1)
    • — коэффициент скорости растворения;
    • — площадь поверхности кристаллов растворяемого вещества;
    • — концентрация растворяемого вещества в жидкой фазе;
    • — концентрация насыщенного раствора при данной температуре.

    Очевидно, что по мере растворения разность концентраций (СН – С) убывает и процесс растворения замедляется.

    Различные случаи химического растворения подчиняются различным кинетическим закономерностям. В наиболее простом случае, когда реакция протекает только на поверхности твердого тела, скорость химического растворения может быть выражена уравнением

    • (10.2)
    • K — коэффициент, зависящий от температуры, гидродинамических и других условий растворения;
    • Ср — концентрация активного реагента в растворителе.

    Частный случай растворения – выщелачивание. Это процесс извлечения (экстракции) жидким растворителем твердого компонента из системы, состоящей из двух и большего числа твердых фаз. Как и растворение, выщелачивание может быть физическим и химическим. Скорость выщелачивания зависит от структуры материала и тем выше, чем больше доля растворимой фазы в нем, больше поверхность и крупнее поры в выщелачиваемом материале.

    10.3.3. Кристаллизация из растворов

    Кристаллизация — процесс выделения твердой фазы (кристаллов) из растворов, происходящий при перенасыщении их по отношению к образующейся твердой фазе. В зависимости от приема, с помощью которого достигается перенасыщение раствора, различают два вида кристаллизации: политермическую и изотермическую.

    При политермической кристаллизации пересыщенный раствор образуется за счет охлаждения системы. Этот процесс протекает при переменной температуре ( ). Метод применим для кристаллизации веществ, растворимость которых существенно возрастает при повышении температуры.

    При изотермической кристаллизации пересыщенный раствор образуется в результате выпаривания части растворителя. Этот процесс протекает при постоянной температуре (Т = const.). Метод применим для кристаллизации веществ, растворимость которых мало зависит от температуры.

    Частным случаем кристаллизации является высаливание, т.е. процесс выделения твердой фазы путем введения в концентрированный раствор веществ, понижающих растворимость растворенного вещества.

    Из других типовых процессов, используемых в солевой технологии, наибольшее значение имеют операции разделения солей, находящихся в твердых смесях или растворах. Помимо описанных выше процессов кристаллизации и выщелачивания, к ним относятся: ионный обмен, экстракция веществ неводными растворителями, флотация, гидросепарация и некоторые другие.

    Источник

    Читайте также:  Как подкормить чеснок нашатырным спиртом весной пропорции

    Все про удобрения © 2023
    Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

    Adblock
    detector
    Группа удобрений