Производство сульфата аммония
Сульфат аммония (NH4)2SО4 — бесцветное кристаллическое вещество, содержит 21,21 % азота. Сульфат аммония применяют почти исключительно в качестве удобрения; он обладает весьма небольшой гигроскопичностью, мало слеживается, внесение его в почву не вызывает затруднений. Недостатками являются низкое содержание азота и большая физиологическая кислотность. При его применении в почве, если она не содержит достаточного количества оснований, постепенно накапливается серная кислота, для нейтрализации которой необходимо периодически производить известкование.
Физико-химические основы получения сульфата аммония
Промышленные способы получения сульфата аммония в основном базируются на нейтрализации серной кислоты аммиаком. Для этой цели используют аммиак, содержащийся в газе, получаемом при коксовании каменных углей. Очистка коксового газа от аммиака (и одновременно от пиридиновых оснований) совмещается с производством сульфата аммония. Синтетический аммиак перерабатывают в более концентрированные азотные удобрения, например в нитрат аммония или в карбамид.
Нейтрализация серной кислоты газообразным аммиаком по реакции:
сопровождается выделением большого количества теплоты. Эта теплота (в сатураторном процессе) и теплота, подводимая извне (в бессатураторном процессе), расходуется на испарение из системы значительного количества воды и продукт кристаллизуется из пересыщенного раствора. Важно обеспечить кристаллизацию из горячего реакционного раствора средней соли, не допуская выделения кислых солей.
Находящиеся в серной кислоте примеси, особенно сульфаты железа и алюминия, затрудняют кристаллизацию сульфата аммония. При нейтрализации кислоты осаждаются коллоидные гидроксиды железа и алюминия:
обволакивающие кристаллы сульфата аммония и тормозящие их рост. Во избежание этого кислоту нейтрализуют не полностью — в непрерывно действующих реакторах поддерживают кислую реакцию среды.
Участки кривых соответствуют насыщению раствора: 1 – (NH4)2SО4;
2 – 4(NH4)2SО4∙Н2SО4; 3 – 3(NH4)2SО4∙Н2SО4; 4 – (NH4)2SО4 ∙ Н2SО4;
5 – (NH4)2SО4 ∙ 3Н2SО4
Рисунок 1 – Изотермы растворимости в системе (NH4)2SО4—Н2SО4—Н2О при температурах 10, 30, 50, 70 и 90 °С
В этой системе в твердой фазе могут существовать различные кислые соли. Поле кристаллизации сульфата аммония (NH4)2SО4лежит в области составов систем, содержащих небольшие количества серной кислоты – а1Е1с при температуре 10 °С и а2Е2с при температуре 90 °С. Во избежание выделения кислых солей содержание серной кислоты в жидкой фазе системы должно быть меньше, чем в точках Е, т. е. меньше 11,08 % при температуре 10 °С или 19,77 % при температуре 90 °С. В процессе нейтрализации реакционная масса имеет высокую температуру, но при последующем отделении кристаллов она охлаждается и это необходимо учитывать при выборе состава реакционного раствора. Практически кислотность раствора поддерживают на уровне 4-12 % свободной серной кислоты, распределяя серную кислоту в значительном количестве циркулирующего реакционного раствора.
Технологическая схема производства сульфата аммония
Основным сырьевым источником в производстве сульфата аммония является аммиак коксового газа. В коксовом газе содержится 6-14 г/м 3 аммиака. Его можно переработать в сульфат аммония тремя способами: косвенным, прямым и полупрямым.
По косвенному способу коксовый газ охлаждают, при этом из него конденсируется смола и надсмольная вода, насыщенная аммиаком; оставшийся в газе аммиак поглощают водой в аммиачных скрубберах. Из полученной аммиачной воды и из надсмольной воды отгоняют аммиак в дистилляционных колоннах, который затем поглощают серной кислотой. Этот способ требует громоздкого оборудования и значительного расхода энергии.
По прямому способу поглощение аммиака серной кислотой с образованием сульфата аммония производят непосредственно из коксового газа, предварительно охлажденного до температуры 68 °С и очищенного от смолы в электрофильтрах.
Наиболее экономичен и широко распространен полупрямой способ. Коксовый газ для конденсации смолы сначала охлаждают до температуры 25-30 °С. Конденсат расслаивается на два слоя: нижний — смолу и верхний — надсмольную воду, в которой растворена часть аммиака. Надсмольную воду обрабатывают в дистилляционной колонне известковым молоком и выделившийся аммиак поглощают серной кислотой вместе с аммиаком, оставшимся в доочищенном в электрофильтрах от смолы коксовом газе.
Поглощение аммиака из коксового газа можно производить в сатураторах барботажного типа (сатураторный способ) или в скрубберах (бессатураторный способ). В сатураторном способе поглощение аммиака из коксового газа и кристаллизация сульфата аммония совмещены в одном аппарате — сатураторе. Это ограничивает возможность выбора технологического режима, который был бы оптимальным одновременно для обоих процессов, т. е. обеспечивающего наиболее полное поглощение аммиака и образование крупнокристаллического сульфата аммония, легко отделяемого и отмываемого от маточного раствора. В бессатураторных способах, используемых на некоторых заводах, эти процессы ведут раздельно — поглощение аммиака в скрубберах, а кристаллизацию сульфата аммония — в кристаллизаторах.
Схема производства сульфата аммония сатураторным способом
Коксовый газ, охлажденный до температуры 25-30 °С и очищенный от смолы, поступает в подогреватель 1, где нагревается глухим паром до температуры 60-80 °С. Подогретый газ смешивается с аммиаком, полученным при переработке надсмольной воды, и направляется по барботажной трубе 5 в сатуратор 4.
Газ барботирует через 78 %-ный раствор серной кислоты, при этом образуется сульфат аммония:
В сатураторе одновременно с образованием сульфата аммония из газа извлекаются пиридиновые основания, образующие с серной кислотой комплексные соединения. Они разлагаются при температуре выше 65 о С с выделением пиридина, который удаляется из сатуратора вместе с газом. Тепло, необходимое для испарения избыточной влаги из образовавшегося раствора сульфата аммония, подводится в сатуратор с коксовым газом, подогретым в аппарате 1.
По выходе из сатуратора газ направляется в ловушку 2 для отделения от брызг кислоты, затем охлаждается и передается на дальнейшее использование. Когда кислотность раствора в сатураторе снижается до 6-8 % (что соответствует содержанию в нем 140-170 г/л связанного аммиака), из раствора начинают выделяться кристаллы сульфата аммония. Образующаяся пульпа центробежным насосом перекачивается в кристаллоприемник 8. Маточный раствор из верхней части кристаллоприемника переливается в приемный сосуд 6 и возвращается в сатуратор. Кристаллы сульфата аммония непрерывно поступают из кристаллоприемника в центрифугу 7, где отделяются от маточного раствора. Отфугованные кристаллы сульфата аммония, имеющие влажность около 2 %, передают на склад или направляют па сушку.
Часть раствора непрерывно циркулирует между сатуратором и баком 3. Благодаря циркуляции и непрерывному перекачиванию пульпы из сатуратора в кристаллоприемник с возвратом маточного раствора в сатуратор в нем обеспечивается постоянный.уровень жидкости и ее тщательное перемешивание. Поэтому кристаллы соли все время находятся во взвешенном состоянии, и рост кристаллов происходит равномерно во всей массе раствора.
Содержание свободной серной кислоты в маточном растворе, циркулирующем в сатураторе, должно быть в пределах 6-8 %. При понижении кислотности (до 1-2 %) из раствора выпадают более крупные кристаллы, что может вызвать забивку сатуратора солью; при этом также ухудшается поглощение аммиака из газа. С повышением кислотности раствора увеличивается растворимость в нем сульфата аммония и получаются более мелкие кристаллы. Если в растворе содержится более 11 % кислоты, образуется легкорастворимый в воде бисульфат аммония NH4HSО4.
На получение 1 т сульфата аммония затрачивают: 0,73-0,75 т серной кислоты (100 %-й), 0,26-0,27 т аммиака (содержащегося в 30-35 тыс.м 3 коксового газа), 100-108 МДж электроэнергии, 8 м 3 воды и 2,7-6 т пара.
К недостаткам сатураторного способа, помимо малого размера получаемых кристаллов, сильно пылящих при сушке, относится и большой расход энергии на преодоление гидравлического сопротивления абсорберов. Этих недостатков лишены бессатураторные способы.
В бессатураторных процессах абсорбцию аммиака из коксового газа ведут в полых скрубберах или кислым ненасыщенным раствором сульфата аммония с последующей вакуум-выпаркой на кристалл, или кислым насыщенным раствором с выращиванием образовавшихся мелких кристаллов в кристаллизаторах под атмосферным давлением. Чаще используют первый способ — орошение абсорбера ненасыщенным раствором предотвращает их засоление, а кристаллизация в выпарных аппаратах позволяет регулировать размеры получаемых кристаллов. Схема такого процесса показана на рисунке.
Схема производства сульфата аммония бессатураторным способом с вакуум-выпаркой
Аммиак улавливается в полом скруббере 2, снабженном форсунками. Скруббер разделен на две ступени. Нижняя его часть орошается раствором, содержащим 3-4 % свободной Н2SО4, верхняя — раствором, содержащим 10 — 12 % Н2SО4. Коксовый газ из скруббера проходит через ловушку брызг 1 и направляется на дальнейшую переработку. Серная кислота и вода (необходимая для разбавления и компенсации испарения) поступают в сборник 4 раствора, циркулирующего через верхнюю часть скруббера с помощью насоса 5. Часть этого раствора через смолоотделитель 3 подается в сборник 11 маточного раствора, циркулирующего через нижнюю часть скруббера с помощью насоса 12. Сюда же поступает маточный раствор с центрифуги 8.
Из нижней зоны скруббера часть раствора, в котором содержится около 1 % свободной серной кислоты и 40 % сульфата аммония, отбирается через смолоотделитель 3 в сборник 10 и насосом 9 подается в вакуум-выпарной аппарат 6. Образовавшиеся здесь кристаллы опускаются в нижнюю коническую часть аппарата, выполняющую роль кристаллорастителя, где мелкие кристаллы поддерживаются во взвешенном состоянии в восходящем потоке свежего раствора. Это обеспечивает их рост при небольшом пересыщении раствора, и более 60 % кристаллов сульфата аммония получаются с размерами, превышающими 0,5 мм. Такие же результаты достигаются при использовании выпарных аппаратов, снабженных выносными кристаллорастителями. Суспензия из выпарного аппарата, содержащая 50-60 % кристаллов, подается для фильтрования на центрифугу 8, где кристаллы промываются горячим конденсатом при температуре 70-80 °С для удаления остатков кислоты. Затем продукт направляется на сушку.
Источник
Производство удобрения сульфата аммония
Производство сульфата аммония, применение сульфата аммония
Сульфат аммония содержит 21% азота и 24% серы. Это химически нейтральная кристаллическая соль белого цвета, хорошо растворимая в воде. Гигроскопичность ее слабая, поэтому при длительном хранении сульфат аммония не слеживается и сохраняет сыпучесть.
Кроме кристаллического производится и гранулированный сульфат аммония .
Получение сульфат аммония происходит в процессе взаимодействия аммиака и серной кислоты, как прямым способом, так и способом оксимирования циклогекcанона и нейтрализации сернокислого эфира и свободой серной кислоты аммиаком, в результате перегруппировки Бекмана при производстве капролактама.
В сельском хозяйстве – как минеральное удобрение.
– кормов для животных
Рекомендации по применению сульфата аммония в сельском хозяйстве
Сульфат аммония синтетический (сернокислый аммоний) – химическая формула (NH4)2SO4 – азотно-серное минеральное удобрение .
Значение азота в жизнедеятельности растений трудно переоценить – он занимает первое место среди минеральных соединений, поэтому остановимся на значении серы в жизни растений. Сера – является важнейшим элементом питания сельскохозяйственных культур, как и азот, она входит в состав белков и аминокислот. По физиологической роли в питании растений серу следует поставить на третье место после азота и фосфора.
Значительная часть серы в растениях находится в виде солей серной кислоты, поэтому сульфат аммония является прекрасным источником серного питания. Аммоний, входящий в сульфат аммония , хорошо доступен растениям, мало подвижен и не вымывается из почв, что обеспечивает возможность широкого его применения в качестве основного удобрения, а также и весенней подкормки.
Низкое содержание серы в почвах может быть существенным фактором, ограничивающим эффективность азотных , фосфорных и калийных удобрений .
По сравнению с другими культурами большое количество серы потребляет рапс. Особенно хорошие результаты обеспечивает внесение сульфата аммония под зерновые, картофель и овощи, в т.ч. сахарную свеклу.
Следует помнить, что у зерновых культур часто проявляются признаки дефицита серы, которые в производственных условиях трактуются как дефицит азота.
При применении сульфата аммония одновременно ликвидируется недостаток азота и серы в питании растений, что значительно улучшает качество производимой продукции.
На черноземах положительное влияние сульфата аммония на урожайность сельскохозяйственных культур в некоторых случаях даже превосходит действие других форм азотных удобрений . Учитывая же тот факт, что розничная цена сульфата аммония намного ниже аммиачной селитры и тем более карбамида , преимущество экономической эффективности применения сульфата аммония, очевидно.
Из всех существующих форм серных удобрений наибольшее содержание серы имеет сульфат аммония синтетический . Поэтому в обозримой перспективе наиболее реальным путем восполнения запасов серы в почвах является использование этого удобрения.
Сроки, дозы и способы применения сульфата аммония
Сульфат аммония является высокоэффективным азотным удобрением , применение которого обеспечивает высокую агрономическую и экономическую эффективность возделывания основных сельскохозяйственных культур.
Сульфат аммония рекомендуется в первую очередь для культур:
требовательных к сере (рапс, капуста и другие крестоцветные культуры, гречиха, озимая и яровая пшеница);
предпочитающих аммонийную форму азота нитратной (картофель, сахарная свекла, кормовые культуры);
лучше произрастающих при слабокислой реакции почвенного раствора (картофель, лен, чай, подсолнечник, морковь, помидоры, щавель, петрушка, репа, редька, тыква, кабачки, редис, крыжовник, малина).
Вносить сульфат аммоний лучше всего весной в основное внесение под предпосевную культивацию, что дает возможность равномерного распределения удобрения по полю. Подкормки сельскохозяйственных культур сульфатом аммония также эффективны. При этом необходима внимательная работа по регулировке машин для внесения удобрений, а также непосредственно при проведении подкормок. Кроме того, сульфат аммония может добавляться в раствор жидких азотных удобрений .
В системе удобрения применение сульфата аммония рекомендуется:
• при возделывании картофеля: 80-100 кг/га д.в. (381-476 кг/га в физическом весе) под предпосадочную культивацию на фоне органических, фосфорных удобрений и калийных удобрений ;
• при возделывании сахарной свеклы: 100-120 кг/га д.в. (476-571 кг/га в физическом весе) под предпосевную культивацию на фоне органических, фосфорных и калийных удобрений + 30-50 кг/га д.в. (143-238 кг/га в физическом весе) в стадии 4-6 настоящих листьев под первое междурядное рыхление;
• при возделывании ярового рапса: 60-80 кг/га д.в. (286-381 кг/га в физическом весе) под предпосевную культивацию в сочетании с применением фосфорных и калийных удобрений + 30-40 кг/га (143-190 кг/га в физическом весе) в стадию бутонизации + 10 кг/га в физическом весе в виде совместной некорневой подкормки с микроэлементами (бор, медь, марганец) в конце бутонизации;
• при возделывании озимого рапса: 60-80 кг/га д.в. (286-381 кг/га в физическом весе) весной в начале возобновления вегетации + 30-40 кг/га (143-190 кг/га в физическом весе) в стадию бутонизации + 10 кг/га в физическом весе в виде совместной некорневой подкормки с микроэлементами (бор, медь, марганец) в конце бутонизации;
• при возделывании гречихи: 60-80 кг/га д.в. (286-381 кг/га в физическом весе) под предпосевную культивацию в сочетании с фосфорными и калийными удобрениями.
• для подкормок озимых зерновых культур: 60-80 кг/га д.в. (286-381 кг/га в физическом весе) весной в начале возобновления вегетации + 20-40 кг/га д.в. (95-191 кг/га в физическом весе) в стадии 1-го узла;
• для ранневесенней подкормки озимых зерновых культур: N60-70 в фоме КАС + 15 кг/га сульфата аммония в раствор;
• для поздней некорневой подкормки озимой и яровой пшеницы в начале колошения – 10 кг/га д.в. (48 кг/га в физическом весе) или 10 кг/га в физическом весе в виде совместной некорневой подкормки с медью и марганцем в стадии последнего листа;
• при возделывании кормовых корнеплодов: кормовая свекла – 100-120 кг/га д.в. (476-571 ц/га в физическом весе) под предпосевную культивацию на фоне органических, фосфорных и калийных удобрений + 30-60 кг/га д.в. (143-286 кг/га в физическом весе) в стадии 4-8 настоящих листьев под первое междурядное рыхление; кормовая морковь, турнепс, брюква – 80-90 кг/га д.в. (381-429 кг/га в физическом весе) под предпосевную культивацию на фоне органических, фосфорных и калийных удобрений + 20-40 кг/га д.в. (95-191 кг/га в физическом весе) под первое междурядное рыхление;
• при возделывании кормовых крестоцветных культур (сурепица, горчица, редька масличная): 60-80 кг/га д.в. (286-381 кг/га в физическом весе) под предпосевную культивацию в сочетании с фосфорными удобрениями и калийными удобрениями ;
• на сенокосах и пастбищах: 60-80 кг/га д.в. (286-381 кг/га в физическом весе) весной в начале возобновления вегетации и после каждого укоса (стравливания);
• при возделывании кукурузы: 100-120 кг/га д.в. (476-571 ц/га в физическом весе) под предпосевную культивацию на фоне органических, фосфорных и калийных удобрений + 30-50 кг/га д.в. (143-238 кг/га в физическом весе) в стадии 6-8 настоящих листьев под междурядное рыхление;
• при возделывании яровых зерновых культур (пшеница, тритикале, ячмень, овес, просо): 60-80 кг/га д.в. (286-381 кг/га в физическом весе) под предпосевную культивацию в сочетании с фосфорными и калийными удобрениями;
• при возделывании однолетних трав: бобово-злаковые травосмеси – 50-60 кг/га д.в. (238-286 кг/га в физическом весе), злаковые травы – 70-90 кг/га д.в. (333-429 кг/га в физическом весе) под предпосевную культивацию на фоне фосфорных и калийных удобрений;
• при возделывании многолетних трав: бобово-злаковые травосмеси – 50-60 кг/га д.в. (238-286 кг/га в физическом весе), злаковые травы – 60-70 кг/га д.в. (286-333 кг/га в физическом весе) весной в начале возобновления вегетации и после каждого укоса;
• в овощеводстве (в физическом весе): капуста белокочанная – 60 г/м 2 , капуста цветная – 45 г/м 2 , капуста брокколи – 45 г/м 2 , капуста краснокочанная – 75 г/м 2 , капуста брюссельская – 60 г/м 2 , капуста кольраби – 40 г/м 2 , редис – 30 г/м 2 , редька – 35 г/м 2 , репа – 25 г/м 2 , щавель – 40 г/м 2 ; морковь – 30-40 г/м 2 , петрушка – 30-40 г/м 2 , тыква и кабачки – 30-40 г/м 2 , томаты (помидоры) – 30-45 г/м 2 , другие овощные культуры – 30-50 г/м 2 ;
• в плодоводстве (в физическом весе): крыжовник и малина – 50-60 г/м 2 , другие плодовые и ягодные культуры – 40-50 г/м 2 .
Сульфат аммония . Преимущества сульфата аммония
Минеральное удобрение сульфат аммония ( аммоний сернокислый ) содержит 21 % азота в аммонийной форме, 24% серы и является высокоэффективным азотно-серным удобрением.
Рекомендуется и используется для азотно-серного питания всех типов сельскохозяйственных культур в основном удобрении и при подкормках.
При внесении сульфат аммония хорошо растворяется в воде, доступен и легко усваивается растениями, относительно мало подвижен и не вымывается из почв в условиях нормального увлажнения и при орошении.
По эффективности применения сульфат аммония не уступает аммиачной селитре и карбамиду , а в части физико-химических свойств (негорючий, взрывобезопасный, неслеживается при долгом хранении) и своей стоимости выгодно отличается и обладает явным преимуществом.
Важнейшая роль серы в жизнедеятельности растений определяется тем, что она является составной частью всех белков и содержится в незаменимых аминокислотах (цистин, метионин), а также в растительных маслах и витаминах. Она имеет большое значение в окислительно-восстановительных процессах, происходящих в растениях, в активировании энзимов и белковом обмене.
Окисленная форма серы – исходный продукт для синтеза белков. При ее недостатке синтез белков задерживается, так как затрудняется синтез аминокислот, содержащих этот элемент. В связи с этим проявление признаков недостаточности серы сходно с признаками азотного голодания. Растения приостанавливаются в развитии, уменьшается размер листьев, удлиняются стебли. При серном голодании листья не отмирают, но имеют бледную окраску. Изучение дефицита серы в питании растений показало, что ее недостаточность вызывает нарушение азотного обмена.
Одним из традиционных источников пополнения серы является удобрение сульфат аммония N-21%, S-24%.
Сульфат аммония всегда дешевле.
Экономика и цифры неумолимы, поэтому экономичность и доступность удобрений в значительной мере определяется стоимостью единицы действующего вещества. Стоимость азота в сульфате аммония ниже, чем в аммиачной селитре и карбамиде . При оценке экономической эффективности необходимо, конечно же, учитывать и наличие серы 24% в отличии от аммиачной селитры и карбамида содержит серу.
Сера оказывает непосредственное влияние на качество будущего урожая. Стоит заметить, что сера занимает одно из ведущих мест среди биогенных элементов после азота, фосфора и калия. Положительное влияние серы на урожай часто остается незамеченным, поскольку она воздействует не на величину, а на качество продукции.
Кроме того, внешнее проявление серного голодания растений почти полностью совпадает с признаками недостаточного азотного питания. В условиях недостатка в почве серы, снижается синтез белков, жиров, витаминов, а азот, что очень опасно, накапливается в виде нитратов. Помимо всего ухудшается хранение продуктов.
Сульфат аммония по эффективности не уступает другим азотным удобрениям .
По многочисленным данным опытов с удобрениями сульфат аммония по эффективности не уступает распространенным азотным удобрениям , таким как аммиачная селитра и карбамид . При сравнительных испытаниях эффективности воздействия различных видов азотных удобрений на величину и качество урожая зерновых, картофеля, масличных отмечено – все удобрения одинаково эффективны при внесении в равных дозах по азоту (60 кг в д.в.) особенно хорошие результаты обеспечивает внесение сульфата аммония под зерновые, рапс, рис, картофель, подсолнечник, свеклу, овощные культуры, арбузы, подкормку многолетних трав и в пожнивные остатки.
Меньшие потери азота и забота об экологии
Известно, что при использовании азотных удобрений в сельском хозяйстве, особенно при несбалансированном соотношении питательных элементов, возникают экологические проблемы. К основным из них следует отнести: занитрачивание продукции, загрязнение подземных и поверхностных вод, потери азота до 20-30% из нитратных удобрений и карбамида, вследствие денитрификации и вымывания. Потери азота из нитратных удобрений значительно больше, чем из аммиачных. Если при поверхностном внесении сульфата аммония потери аммиака составляют, как правило, не более 1-3%, то у карбамида и аммиачной селитры 25-30% от внесенного количества азота. Важно также то, что этот элемент питания в сульфате аммония находится в наиболее доступной форме для растений и участвует в формировании урожая на протяжении всего вегетационного периода.
Утилизация соломы и использование ее для удобрения
Один из эффективных способов применения сульфата аммония – это внесение его с пожнивными остатками (измельченной соломой). При этом доза азота составляет 10 кг. д.в. на 1 тонну соломы, что обеспечивает ускоренное разложение клетчатки. Таким образом, одновременно решаются две важные проблемы – утилизация соломы и охрана окружающей среды.
При урожае зерновых 20-30 ц/га внесение сульфата аммония совместно с пожнивными остатками в почву будет обеспечивать возвращение 30-40 кг. азота, 50-80 кг. фосфора, 18-24 кг. калия, а также 35-45 кг. серы, способствующей значительному повышению белка в продукции.
Минеральное азотно-серное удобрение сульфат аммония представляет собой светлую кристаллическую соль и с оттенками желтого либо розового цвета, хорошо растворимую в воде. Продукт характеризуется слабой гигроскопичностью, поэтому не слеживается при длительном хранении и может храниться до 5 лет, не взрывоопасен.
Все эти свойства выгодно отличают его от других азотных удобрений, в частности от аммиачной селитры и карбамида.
Эффективность применения сульфата аммония при дефиците серы.
Недостаток или избыток серы в первую очередь проявляется на молодых листьях и точках роста. Обратное передвижение её очень незначительно и поэтому она относится к трудно реутилизируемым элементам. В этом сера очень сильно отличается от фосфора. Недостаток серы у большинства растений имеет сходство с признаками недостатка азота, но при серном голодании он проявляется на молодых листьях – листья мелкие, стебли жесткие, рост растений ослабленный, окраска листьев равномерно бледно-зелёная. В сельскохозяйственной практике это часто приводит к ошибкам в диагнозе, завышению доз азотных удобрений, недобору урожаев и снижению качества продукции. Установлено, что растения содержат неодинаковое количество серы и соответственно испытывают разную потребность в этом элементе. Различие в содержании и потреблении серы сельскохозяйственными культурами обусловлены, прежде всего, биологическими особенностями растений, стадиями их развития, а также содержанием этого элемента в почве и атмосфере.
Исследованиями также достаточно четко установлено, что применение серосодержащих удобрений на почвах с недостаточным содержанием серы способствует повышению урожая и улучшению качества растительной продукции, увеличению доступности растениям фосфора, кальция, марганца; повышает окупаемость урожаями традиционных NPK удобрений.
Особо следует отметить, что применение сульфата аммония под сельскохозяйственные культуры в необходимых дозах по азоту, оптимизирует не только азотное, но и серное питание растений, а также благоприятствует обеспечению положительного баланса этого элемента для последующих культур. Поэтому сульфат аммония следует рассматривать практически как комплексное удобрение (NS).
P.S. Cерное голодание влечёт за собой снижение нарастания сухой массы, замедление темпов наступления фаз онтогенеза, отставание созревания культур. Недостаток серы особенно сказывается на образовании репродуктивных органов и в снижении качественных показателей продукции.
Цена сульфата аммония определяется рыночным сезонным спросом. Поэтому купить сульфат аммония по более низкой цене можно в межсезонный период.
Источник