Меню

Процесс производства минеральных удобрений

Производство минеральных удобрений в России

Современное сельское хозяйство невозможно представить без активного использования минеральных удобрений. Благодаря им сельхозпредприятия получают сегодня высокие урожаи, которых достаточно, чтобы прокормить постоянно урбанизирующийся мир. Можно с уверенностью говорить о том, что без минеральных удобрений продукты питания стоили бы значительно дороже, а их нехватка была бы серьезным фактором сдерживания для роста человеческой популяции. Именно поэтому производство минеральных удобрений является важной отраслью отечественной экономики.

Что такое минеральные удобрения?

Минеральными удобрениями называют неорганические вещества, используемые для подкормки сельскохозяйственных растений, ускорения их роста.

Питательные вещества, содержащиеся в таких удобрениях, имеют вид Вид – эволюционно сложившаяся совокупность особей, характеризующаяся единым . минеральных солей. В простых удобрениях есть только один элемент, например, только фосфор. Комплексные удобрения имеют в своем составе не менее двух таких элементов.

Все неорганические удобрения подразделяются на фосфорные, азотные, калиевые, сложные и микроудобрения. Их получают путем сложных химических и физических реакций на предприятиях химической промышленности. Это могут быть как крупные производственные комплексы, на которых работают десятки тысяч рабочих, так и относительно небольшие цеха на несколько десятков или сотен специалистов.

Зачем нужны минеральные удобрения?

В почве изначально содержится некоторое количество всех необходимых растениям веществ. Однако их концентрация почти всегда крайне невысока и не сбалансирована. Иными словами, растениям всегда не хватает одного или нескольких микроэлементов, поэтому развитие происходит медленнее.

Покрывая дефицит питательных веществ в почве, мы получаем возможность значительно ускорить рост растений, позволяя им раскрыть весь свой потенциал, а не малую его часть. В современном сельском хозяйстве применение удобрений является обязательным агротехническим приемом. Благодаря ему фермеры могут получать более высокие урожаи с меньшей площади пашни. При этом прогресс не стоит на месте и производство новых минеральных удобрений, всё более совершенных и эффективных, продолжается постоянно.

Необходимость в использовании удобрений объясняется несколькими ключевыми факторами:

  • Демографический. На фоне быстрого роста населения в последние два века, площадь пригодной для обработки земли осталась неизменной. Чтобы прокормить растущее население при ограниченных земельных ресурсах, необходимо повышать урожайность.
  • Экологический. В процессе выращивания культурных растений неизбежно происходит истощение земли, поскольку люди забирают урожай себе, и он не возвращается обратно в землю в качестве природного удобрения. Единственный способ поддерживать и даже увеличивать плодородность почвы — это искусственное внесение удобрений.
  • Экономический. С точки зрения производственных затрат сельхозпредприятиям выгоднее повышать плодородность почвы и собирать высокие урожаи на малой площади, чем обрабатывать огромные площади, собирая скудный урожай. Иными словами, даже с учетом затрат на удобрения собрать 10 тонн продукции с одного гектара — это всегда выгоднее, чем 10 тонн с 10 гектар.

Использование удобрений стало логичным шагом в развитии интенсивного сельского хозяйства. Практика применения органических удобрений, в первую очередь навоза, насчитывает многие тысячи лет. С развитием химии люди стали задумываться о возможностях использования неорганических удобрений, поскольку они более эффективны. Первое предприятие по производству минеральных удобрений открылось в Англии в первой половине XIX века. Вскоре использование агрохимии стало повсеместным.

Главным преимуществом минеральных удобрений перед органическими является их более высокая эффективность. Поскольку минералы находятся в уже готовой для питания растений форме и после попадания в почву не нуждаются в прохождении стадии разложения, они начинают действовать существенно быстрее.

Производство минеральных удобрений в России

Получение удобрений является одним из важнейших направлений отечественной химической промышленности. Российские химкомбинаты не только полностью обеспечивают внутренние потребности страны в данной продукции, но и активно экспортируют ее за рубеж. Согласно данным статистики, более 80% производимых в России минеральных удобрений отправляется на экспорт.

Сегодня в нашей стране работает более трех десятков крупных и химкобинатов и десятки мелких цехов, совокупно выпускающих около 20 млн. тонн удобрений в год, что составляет около 7% мирового производства. Столь высокие показатели в мировом масштабе объясняются главным образом тем, что Россия располагает большими запасами сырья, из которого производятся минеральные удобрения — калийных руд, природного газа, кокса и др.

География расположения предприятий, специализирующихся на данном виде производства, основана на близости источников сырья. Например, сырье для производства минеральных удобрений азотной группы — это аммиак. Его получают в основном из кокса. Долгое время выпуском этих удобрений занимались специализированные подразделения металлургических предприятий. Центрами такого производства являются города Челябинск, Кемерово, Липецк, Магнитогорск и др.

Читайте также:  Можно ли подкормить комнатные растения йодом

Развитие технологий позволило освоить еще один вид Вид – эволюционно сложившаяся совокупность особей, характеризующаяся единым . аммиачного сырья — природный газ. Сегодня заводы, работающие по этой технологии, уже не привязаны к центрам добычи и могут располагаться просто вблизи от крупных газопроводов.

Существует технология производства минеральных удобрений азотной группы, которая использует в качестве сырья отходы нефтепереработки. Такие комбинаты работают в Ангарске и Салавате.

При получении фосфорных соединений предприятия не так сильно привязаны к сырьевой базе. А с учетом того, что фосфаты в России добывают в основном в Заполярье, расположение предприятий вдали от мест добычи оправдано вдвойне: проще перевезти сырье в густозаселенные регионы, чем строить завод и жилье для рабочих на крайнем севере. Основные мощности по выпуску удобрений фосфатной группы сосредоточены гораздо южнее.

Впрочем, эти удобрения продают также и металлургические предприятия, использующие в качестве сырья собственные технологические газы. Одним из крупнейших производителей этого типа является город Красноуральск.

Свое предприятие по производству минеральных удобрений

Долгое время производство минеральных удобрений в России было возможно только на крупных предприятиях-гигантах. Постоянное совершенствование технологий в химической промышленности изменило ситуацию. Сегодня создание относительно небольшого цеха по выпуску неорганических удобрений под силу даже частным лицам. Однако следует учесть несколько ключевых моментов:

  • Это достаточно сложный вид Вид – эволюционно сложившаяся совокупность особей, характеризующаяся единым . производства, который потребует не только закупки сложного и дорогостоящего оборудования, но и найма высококвалифицированных специалистов.
  • Потребуется пройти девять кругов ада, чтобы получить все необходимые разрешения и согласования от государства. За предприятиями химической промышленности контроль довольно строгий.
  • Объем инвестиций в открытие даже относительно небольшого завода (или даже цеха) будет исчисляться десятками миллионов рублей.

Также следует отметить, что малое предприятие по производству удобрений может освоить лишь некоторые наиболее простые вещества. Технология производства сложных минеральных удобрений по-прежнему по зубам лишь крупным промышленным комплексам, о создании которых говорить здесь нет никакого смысла.

Сегодня на рынке оборудования достаточно много предложений как от отечественных, так и от зарубежных производителей. Примечательно, что отечественные производственные линии для малых предприятий по производству удобрений практически ничем не уступают западным аналогам. В этой связи нет острой необходимости с самого начала покупать более дорогое импортное оборудование для производства минеральных удобрений. Наоборот, отечественные машины даже более приспособлены к российскому сырью, с которым и придется работать в конечном итоге.

Важной составляющей успеха при открытии собственного завода минеральных удобрений является поиск поставщиков сырья. Это достаточно специфическая продукция, которую не так-то легко приобрести. Следует заранее изучить этот вопрос и проанализировать все возможные варианты. Разумнее всего открывать подобный бизнес рядом с производителями сырья.

Источник

Процесс производства минеральных удобрений

Минеральные удобрения (МУ) — соли и другие неорганические природные или полученные промышленным путем вещества, содержащие в своем составе элементы, необходимые для питания растений и улучшения плодородия почвы, используемые с целью получения высоких и устойчивых урожаев сельскохозяйственных культур.

В образовании тканей растений, в его росте и развитии принимают участие около 70 элементов, которые по их роли могут быть разделены на следующие группы:

  1. элементы-органогены (углерод, водород, кислород, азот);
  2. зольные элементы (фосфор, кальций, калий, магний, сера);
  3. микроэлементы (бор, молибден, медь, цинк, кобальт);
  4. элементы, входящие в состав хлорофилла и различных ферментов (железо, марганец).

Из этих элементов углерод, водород и кислород образуют около 90% массы сухого вещества растения, 8 – 9% составляют азот, фосфор, сера, магний, кальций и калий. На долю остальных элементов, в том числе таких жизненно важных, как бор, железо, медь, марганец и другие, приходится не более 1-2%.

Важнейшее значение для питания растений имеют азот, фосфор и калий, от которых зависят обмен веществ в растении и его рост. Азот входит в состав белков и хлорофилла, принимает участие в фотосинтезе. Соединения фосфора играют важную роль в дыхании и размножении растений, участвуя в процессах превращения углеводов и азотсодержащих веществ. Калий регулирует жизненные процессы, происходящие в растении, улучшает водный режим, способствует обмену веществ и образованию углеводов в тканях растений.

Основную массу кислорода, углерода и водорода растение получает из воздуха и воды, остальные элементы извлекает из почвы. При современных масштабах культурного земледелия естественный кругооборот питательных элементов в природе нарушается, так как часть их выносится с урожаем и не возвращается в почву (таблица. 10.1), а также вымывается из почвы дождевыми водами или переходит в недеятельную форму (иммобилизируется). Например, азот под воздействием микроорганизмов восстанавливается из иона NO3 — до N2 и N2O. При этом, чем выше урожайность, тем больше вынос питательных элементов из почвы.

Читайте также:  Chrysal clear универсальная подкормка для срезанных цветов инструкция

Таблица 10.1 — Вынос питательных элементов из почвы

Элемент и его соединение

Вынос, кг/га, при урожае

сахарной свеклы 270 ц/га

Это вызывает необходимость в компенсации потерь питательных элементов в почве путем внесения в нее веществ, содержащих эти элементы, то есть минеральных удобрений, что позволяет обеспечить высокие урожаи сельскохозяйственных культур. Так, при внесении в почву полного, то есть содержащего азот, фосфор и калий, удобрения урожай повышается в 1,5 – 3 раза в зависимости от культуры (табл. 10.2).

Таблица 10.2 — Влияние минеральных удобрений на урожайность

Применения МУ, помимо повышения урожайности, увеличивает производительность труда, сокращает себестоимость сельскохозяйственной продукции и улучшает ее качество: повышает содержание сахара в свекле, крахмала в картофеле, увеличивает прочность хлопкового и льняного волокон, морозо- и засухоустойчивость растений.

10.2. Классификация минеральных удобрений

Ассортимент выпускаемых промышленностью МУ весьма многообразен. Они классифицируются по природе питательных элементов, по содержанию и числу питательных элементов, по способам получения и свойствам.

По природе питательных элементов МУ подразделяют на азотные, фосфорные (фосфатные), калиевые (калийные), магниевые (магнезиальные), борные и т.д. Основное место по масштабам производства занимают первые три вида минеральных удобрений.

По числу питательных элементов МУ делятся на простые (однокомпонентные) удобрения, содержащие только один питательный элемент, и комплексные удобрения, содержащие два (двойные типа NP, PK, NK) или три (тройные типа NPK или полные) элемента.

Комплексные МУ подразделяются на сложные, полученные в результате химической реакции, смешанные, представляющие механические смеси, образованные механическим смешением различных простых минеральных удобрений, и сложносмешанные, представляющие комбинацию двух первых типов.

По содержанию питательного элемента среди МУ выделяют неконцентрированные (содержащие менее 33% питательных элементов), концентрированные (содержащие более 33% питательных элементов) и высококонцентрированные (содержащие более 60% питательных элементов) удобрения.

По свойствам минеральные удобрения делятся на твердые, жидкие, порошкообразные, кристаллические, гранулированные, растворимые и нерастворимые.

Усвоение МУ растениями зависит от их растворимости и характера почв, главным образом от рН почвы. Азотные и комплексные минеральные удобрения растворимы в воде. Фосфорные минеральные удобрения по растворимости делятся на водорастворимые (рН=7), цитратно- или лимоннорастворимые, то есть растворимые в слабых органических кислотах (рН ;

  • масса в условных единицах – для планирования производства и поставок МУ (mу). При этом содержание действующих веществ в условной единице принято: в азотных – 0,205 мас. долей N; в фосфорных – 0,187 мас.дол. P2O5; в калийных – 0,416 мас. долей К2O.
  • Эффективность использования МУ существенно зависит от правильного сочетания питательных элементов, вносимых с ними в почву. Соотношение питательных элементов выражают в виде формул их состава, например:

    Уравновешенные минеральные удобрения — удобрения, в которых соотношение питательных элементов соответствует агротехническим требованиям. От правильного использования минеральных удобрений (их «уравновешенности») существенно зависит урожайность зерновых и других сельскохозяйственных культур.

    10.3. Типовые процессы солевой технологии

    Большинство МУ представляет различные минеральные соли или твердые вещества с подобными солям свойствами. Технологические схемы производства минеральных удобрений весьма разнообразны, но в большинстве случаев складываются из одних и тех же типовых процессов, свойственных солевой технологии, цель которой – разделение сложных систем, состоящих из нескольких солевых компонентов.

    Переработка минерального сырья в соли (и в минеральные удобрения) может идти или его высокотемпературной обработкой, или «мокрым» путем в жидких средах и суспензиях. В соответствии с этим, помимо обычных процессов подготовки сырья к переработке (измельчение, классификация ,обогащение, сушка), в солевой технологии особое значение имеют два типа процессов:

    • термическая или термохимическая обработка, то есть различные виды обжига сырья или шихты;
    • растворение и перекристаллизация веществ, связанные с их химической обработкой, разделением и очисткой растворов от примесей.

    10.3.1. Обжиг

    Обжиг — процесс термической обработки материалов, заключающийся в нагреве их до заданной температуры, выдержке при этой температуре и охлаждении. При обжиге, в зависимости от условий процесса, протекают реакции термического разложения, окисления или восстановления, образования и полиморфных превращений минералов. В соответствии с протекающими при обжиге химическими превращениями различают:

    • кальцинационный обжиг ( кальцинация ) – удаление из вещества летучих компонентов, чаще всего оксида углерода (IV) и конституционной воды, например:
      • обжиг известняка: CaCO3 = CaO + CO2,
      • дегидратация гидроксида алюминия до его оксида: 2Al(OH)3 = Al2O3 + 3H2O;
    • окислительный обжи г, в результате которого повышаются степени окисления элементов, например: 2FeO + O2 = 2Fe3O4 или превращение сульфида в оксид: CuS + 1,5O2 = CuO + SO2;
    • восстановительный обжиг , в результате которого понижаются степени окисления элементов, например, получение элементарного фосфора: Ca3(PO4)2 + 5C + 3SiO2 = P2 + 5CO + 3CaSiO3.
    Читайте также:  Урожай зерновых был хорошим

    Частный случай обжига – спекание сырья с какими-либо реагентами с целью образования растворимых, извлекаемых из сырья продуктов, например, спекание фторапатита с содой:

    Обжиг и спекание представляют собой гетерогенные процессы, в которых реакции протекают в системах «Т + Т», «Ж + Ж» и «Т + Г», где газообразная и жидкая фазы образуются за счет диссоциации и плавления твердой фазы. Поэтому скорость процессов обжига и спекания зависит как от скорости химической реакции, так и скоростей возгонки, плавления и диффузии твердых, жидких и газообразных веществ через фазы, образованные реагирующими компонентами и продуктами их взаимодействия.

    Скорость процессов обжига и спекания может быть увеличена за счет повышения температуры, измельчения компонентов обжигаемого материала, повышения их концентрации, перемешивания и создания условий, при которых один из компонентов будет находиться в жидком и газообразном состоянии.

    10.3.2. Растворение и выщелачивание

    Растворение твердого тела — процесс разрушения его кристаллической структуры под воздействием растворителя с образованием гомогенной системы – раствора.

    Растворение может быть физическим, когда возможна обратная кристаллизация растворенного вещества из раствора по схеме

    и химическим, когда растворитель или содержащийся в нем реагент химически взаимодействует с растворяемым веществом и делает невозможным его обратную кристаллизацию, то есть по схеме

    • где: A — растворяемое вещество; Р — растворитель; В-новое вещество, образовавшееся в результате растворения.

    Очевидно, что процесс химического растворения, в отличии от процесса физического растворения, является необратимым.

    Растворение представляет гетерогенный некаталитический процесс, протекающий в системе «Т + Ж» в диффузионной области.

    Процесс растворения ускоряется при повышении температуры, измельчении твердой фазы, перемешивании и увеличении концентрации. В случае физического растворения движущей силой процесса является разность концентраций , поэтому скорость его определяется уравнением

    • (10.1)
    • — коэффициент скорости растворения;
    • — площадь поверхности кристаллов растворяемого вещества;
    • — концентрация растворяемого вещества в жидкой фазе;
    • — концентрация насыщенного раствора при данной температуре.

    Очевидно, что по мере растворения разность концентраций (СН – С) убывает и процесс растворения замедляется.

    Различные случаи химического растворения подчиняются различным кинетическим закономерностям. В наиболее простом случае, когда реакция протекает только на поверхности твердого тела, скорость химического растворения может быть выражена уравнением

    • (10.2)
    • K — коэффициент, зависящий от температуры, гидродинамических и других условий растворения;
    • Ср — концентрация активного реагента в растворителе.

    Частный случай растворения – выщелачивание. Это процесс извлечения (экстракции) жидким растворителем твердого компонента из системы, состоящей из двух и большего числа твердых фаз. Как и растворение, выщелачивание может быть физическим и химическим. Скорость выщелачивания зависит от структуры материала и тем выше, чем больше доля растворимой фазы в нем, больше поверхность и крупнее поры в выщелачиваемом материале.

    10.3.3. Кристаллизация из растворов

    Кристаллизация — процесс выделения твердой фазы (кристаллов) из растворов, происходящий при перенасыщении их по отношению к образующейся твердой фазе. В зависимости от приема, с помощью которого достигается перенасыщение раствора, различают два вида кристаллизации: политермическую и изотермическую.

    При политермической кристаллизации пересыщенный раствор образуется за счет охлаждения системы. Этот процесс протекает при переменной температуре ( ). Метод применим для кристаллизации веществ, растворимость которых существенно возрастает при повышении температуры.

    При изотермической кристаллизации пересыщенный раствор образуется в результате выпаривания части растворителя. Этот процесс протекает при постоянной температуре (Т = const.). Метод применим для кристаллизации веществ, растворимость которых мало зависит от температуры.

    Частным случаем кристаллизации является высаливание, т.е. процесс выделения твердой фазы путем введения в концентрированный раствор веществ, понижающих растворимость растворенного вещества.

    Из других типовых процессов, используемых в солевой технологии, наибольшее значение имеют операции разделения солей, находящихся в твердых смесях или растворах. Помимо описанных выше процессов кристаллизации и выщелачивания, к ним относятся: ионный обмен, экстракция веществ неводными растворителями, флотация, гидросепарация и некоторые другие.

    Источник

    Adblock
    detector