Меню

Пути регулирования воздушного режима почвы

Пути регулирования воздушного режима почвы

Глава 8. ПОЧВЕННЫЙ ВОЗДУХ

Воздушная фаза почвы – важная и наиболее динамичная составная часть почвы, находящаяся в тесной взаимосвязи с остальными фазами. Почвенным воздухом называется смесь газов и летучих органических соединений, заполняющих почвенные поры, поэтому почвенный воздух является конкурентом почвенного раствора. Количество и состав почвенного воздуха оказывают большое влияние на развитие и жизнедеятельность растений и микроорганизмов, растворимость химических соединений и их миграцию в профиле, на интенсивность почвенных процессов.

§1. Состав почвенного воздуха

Количество воздуха в почве и его состав зависят от ее воздухоемкости и воздухопроницаемости, а также от пористости и влажности, так как почвенный воздух занимает все поры, в которых нет воды. При одной и той же влажности в структурных почвах, обладающих некапиллярной пористостью, воздуха больше, чем в бесструктурных. Дополнительное насыщение почвы водой влечет за собой вытеснение из нее воздуха. Воздушный режим наиболее благоприятен в структурных и рыхлых почвах.

Главными источниками газовой фазы являются атмосферный воздух и газы, образующиеся в самой почве. Химический состав почвенного воздуха тесно связан с атмосферным, так как идет постоянный газообмен, но количественный показатель составляющих газов отличается, что обусловлено и физическими свойствами самой почвы. Чем более пористая почва, тем ближе составы почвенного и атмосферного воздуха. В результате дыхания микроорганизмов и корней растений почвенный воздух обычно намного богаче углекислым газом и беднее кислородом (табл. 12).

Если состав атмосферного воздуха в целом постоянный, то содержание кислорода и углекислого газа в почвенном воздухе может сильно колебаться.

Состав атмосферного и почвенного воздуха

В пахотных хорошо аэрируемых почвах с благоприятными физическими свойствами содержание и СО2 в течение вегетации растений не превышает 1 – 2 %, а содержание О2 не бывает ниже 18 %. При переувлажнении в тяжелых пахотных почвах содержание СО2 может достигать 4 – 6 % и более, а О2 падать до 17 – 15 % и ниже. В заболоченных почвах наблюдаются еще более высокие концентрации СО2 и низкие О2. Оптимальное содержание О2 и СО2 в почвенном воздухе соответственно 20 % и 1 %. При такой обеспеченности кислородом в почве развиваются аэробные процессы и создаются благоприятные условия для произрастания растений. Для пропашных культур (овощные и др.) желательно минимальное содержание О2 не ниже 17 %, зерновых – не ниже 14 % (овес хорошо растет и при 10 % О2). Основными потребителями кислорода в почве являются корни растений, аэробные микроорганизмы и почвенная фауна и лишь незначительная часть его расходуется на химические процессы. Недостаток кислорода ослабляет дыхание, обмен веществ, а при отсутствии в почве свободного кислорода прекращается развитие растений. Влияние недостатка кислорода в почве связано с увеличением концентрации СО2,понижением окислительно-восстановительного потенциала, развитием анаэробных (восстановительных) процессов, образованием токсичных для растений соединений (СН4, Н2S, С2Н4), снижением доступных питательных веществ, ухудшением физических свойств почвы. Все это в конечном итоге снижает плодородие почвы и урожай растений. Таким образом, СО2 и О2 являются антагонистами в почве.

Второй важный компонент почвенного воздуха – углекислый газ, который обнаруживается в почве главным образом благодаря биологическим процессам. Частично он может поступать из грунтовых вод, а также в результате его десорбции из твердой и жидкой фаз почвы. Некоторое количество СО2 может возникать при превращении бикарбонатов в карбонаты во время испарения почвенных растворов и в процессе воздействия кислот на карбонаты почвы, а также химического окисления органического вещества. Высокое содержание его в почве (> 3 %) отрицательно действует на семена, угнетает развитие растений и снижает урожай. Однако СО2 необходим для фотосинтеза (установлено, что 38 – 72 % СО2 доставляется растению из почвенного воздуха). Есть мнение, что 90 % СО2 атмосферного воздуха имеет почвенное происхождение.

В почвенном воздухе, кроме макрогазов (N2, СО2, О2), часто встречаются Н2, Н2S, СН4, NH3, предельные и непредельные углеводороды, эфиры, фосфористый водород, образующиеся в результате анаэробного разложения органического вещества и их новообразования, трансформацией в почве удобрений, гербицидов, продуктов техногенного загрязнения. Их концентрации очень малы, но этого может быть достаточно для снижения биологической активности почв.

§2. Газообмен почвенного воздуха, воздушные свойства и воздушный режим почвы. Регулирование воздушного режима почв

Между почвенным и атмосферным воздухом происходит постоянный газообмен (аэрация). Если бы его не было, то состав почвенного воздуха мог бы настолько ухудшиться, что стал бы совершенно непригодным для развития растений. Поэтому чем быстрее и полнее обменивается почвенный воздух с атмосферным, тем благоприятнее создаются в почве условия для жизни культурных растений, а также для биохимических почвенных процессов. Газообмен имеет огромное значение и для развития надземных частей растений, так как органическую массу они строят благодаря ассимиляции углекислого газа воздуха. Содержание же его в воздухе иногда бывает недостаточным для интенсивного развития растений, поэтому чем лучше развит газообмен в почве, чем больше насыщается приземный слой воздуха СО2, тем благоприятнее условия для роста растений.

Газообмен почвенного воздуха с атмосферным происходит через систему воздухоносных (некапиллярных) пор под действием диффузии, изменения температуры почвы, атмосферного давления, уровня грунтовых вод, изменения количества влаги в почве (зависящее от атмосферных осадков, орошения и испарения), ветра. Глубина газообмена около 50 см.

Читайте также:  Пленка для теплых грядок

Главная роль в газообмене принадлежит механизму диффузии – перемещению газов в соответствии с их парциальным давлением. Поскольку в почвенном воздухе О2 меньше, а СО2 больше, чем в атмосфере, то под влиянием диффузии создаются условия для непрерывного поступления О2 в почву и выделения СО2 в атмосферу.

Изменение температуры, барометрического давления и ветра вызывают объемные изменения воздуха (сжатие или расширение), а следовательно, и общий ток его из почвы или в почву. Изменение количества влаги в почве и уровня грунтовых вод способствует газообмену, так как влага осадков вытесняет почвенный воздух, а испарение воды из почвы вызывает поступление атмосферного воздуха на ее место.

Состояние газообмена определяется воздушными свойствами почв. К воздушным свойствам почв относятся воздухопроницаемость и воздухоемкость.

Воздухопроницаемость – способность почвы пропускать через себя воздух. Она измеряется количеством воздуха в мл, прошедшим под определенным давлением в единицу времени через площадь сечения почвы 1 см 2 при толщине слоя 1 см. Чем полнее выражена воздухопроницаемость, тем лучше газообмен, тем больше в почвенном воздухе О2и меньше СО2.

Воздухопроницаемость зависит от механического состава почвы, ее плотности, структуры и некапиллярной порозности. Воздух в почве передвигается по порам, не заполненным водой и не изолированным друг от друга, чем они крупнее, тем лучше воздухопроницаемость. В структурных почвах, где наряду с капиллярными порами имеется достаточное количество крупных некапиллярных пор, создаются наиболее благоприятные условия для воздухопроницаемости, при одной лишь капиллярной пористости, свойственной бесструктурным почвам, диффузия воздуха тормозится. Снижает газообмен также образующаяся на поверхности почв корка.

Воздухоемкость – это способность почвы содержать в себе определенное количество воздуха, выражается в объемных процентах. Зависит от влажности и пористости почвы: чем выше пористость и меньше влажность, тем больше воздуха содержится в почве.

Максимальная воздухоемкость характерна для сухих почв и равна общей пористости. Однако в природных условиях почвы всегда содержат то или иное количество воды, поэтому величина воздухоемкости очень динамична.

В воздушно-сухом состоянии воздухоемкость (РВ) почвы представляет разность между общей пористостью и объемом гигроскопической воды:

где Робщ – общая порозность почвы (%), РГ – объем гигроскопической влаги (%).

В естественных условия количество пор, занятых воздухом (пористость аэрации, РАЭР), определяют по формуле:

где РW – объем пор, занятых водой (%), определяется по формуле:

где dV – объемная плотность в г/см 3 , W – влажность почвы (%).

Нормальная аэрация почв обеспечивается, если величина воздухоемкости превышает 15 % объема почвы. Оптимальные условия для газообмена создаются при содержании воздуха в минеральных почвах 20 – 25 %, а в торфяных – 30 – 40 %.

Воздушным режимом почв называют совокупность всех явлений поступления воздуха в почву, передвижения его в профиле почвы, изменения состава и физического состояния при взаимодействии с твердой, жидкой и живой фазами почвы, а также газообмен почвенного воздуха с атмосферным.

Воздушный режим почв подвержен суточной, сезонной, годовой изменчивости и находится в прямой зависимости от свойств почв (физических, химических, физико-химических, биологических), погодных условий, характера растительности, возделываемой культуры, агротехники.

Важным показателем воздушного режима почв является динамика СО2 и О2 в почвенном воздухе. Пахотные почвы основных типов почв поглощают при 20 °С от 0,5 до 5 мл и более О2 на 1 кг сухой почвы за 1 ч. Основные потребители кислорода и продуценты углекислого газа в почве – корни растений, микроорганизмы и почвенные животные. Потребление кислорода высшими и низшими растениями зависит от их биологических особенностей и возраста, а также от температуры и влажности среды и др. При увеличении температуры с 5 до 30 °С интенсивность поглощения О2 и выделения СО2 возрастает в 10 раз.

Выделение СО2 из почвы в приземный слой атмосферы принято называть «дыханием» почвы. Интенсивность дыхания почвы зависит от ее свойств, гидротермических условий, характера растительности, агротехнических мероприятий и является важной характеристикой газообмена и активности биологических процессов в почве. Выделение СО2 почвой усиливается при ее окультуривании в связи с активизацией биологических процессов и улучшением условий аэрации. Торфяно-глеевые почвы тундры выделяют СО2 в количестве 0,3 т/га в год, подзолистые почвы хвойных лесов – от 3,5 до 30, бурые и серые лесные почвы – от 20 до 60, степные черноземы – 40 – 70 т/га в год.

Динамика этих газов в почве сильно подвержена сезонным колебаниям, так как смена времен года сопровождается резким изменением температуры и влажности. Летом потребление кислорода и выделение углекислого газа в несколько раз больше, чем ранней весной и поздней осенью.

Наиболее благоприятно воздушный режим складывается в структурных почвах, обладающих рыхлым сложением, способных быстро проводить и перераспределять поступающие в них воду и воздух. В улучшении воздушного режима нуждаются многие почвы, особенно с постоянным или временным избыточным увлажнением.

Регулирование воздушного режима почв достигается агротехническими и мелиоративными приемами. Применяются такие мероприятия по обеспечению нормального газообмена, как разрушение почвенной корки и поддержание поверхности почвы в рыхлом состоянии путем глубокой вспашки, боронования, культивации, рыхления междурядий в период вегетации. Воздушный режим в заболоченных и периодически переувлажненных почвах регулируют осушением.

Читайте также:  Литература по выращиванию бройлеров

Источник

Регулирование воздушного режима почвы

Воздушный режим – это совокупность всех явлений поступления, перемещения воздуха по профилю почвы, изменения его состава и физического состояния при взаимодействии с твёрдой, жидкой и живой фазами почвы, а также газообмен почвенного воздуха с атмосферным.

Регулируют воздушный режим путём улучшения физических свойств и структуры почвы: это обработка почвы, внесение органических удобрений, выращивание многолетних трав, отвод излишнего количества воды с почвы, известкование кислых и гипсование засоленных почв. Особенно велика роль обработки почвы. Хорошо взрыхленные почвы (плотность которых не превышает 1,2-1,3 г/см3) даже при сравнительно высокой влажности углекислого газа содержат не более 0,2-0,6, а кислорода – не менее 20 %, то есть имеют удовлетворительный воздушный режим. В уплотнённых и сильно увлажнённых почвах содержание углекислого газа поднимается до вредного уровня – 2 и даже 5-6%. Глубокое рыхление обеспечивает проникновение воздуха в нижние слои почвы, что способствует прорастанию корней вглубь и усиливает засухоустойчивость растений.

Рыхление верхнего слоя почвы предотвращает образование почвенной корки.

В зонах недостаточного и неустойчивого увлажнения, где дефицит воздуха в почве случается редко, практически нет необходимости в применении специальных мер увеличения газообмена (не считая орошаемых земель).

Неудовлетворительный воздушный режим может сложиться на тяжёлых переувлажнённых почвах, при наличии слитых горизонтов в профиле почвы, образовании плужной подошвы или почвенной корки.

Источник

Воздушные свойства и воздушный режим почв

В почвах – пористых системах – в том или ином количестве присутствует почвенный воздух (газовая среда). Это важнейшая, наиболее динамичная составная часть почвы находится в тесном взаимодействии с твердой, жидкой и живой фазами почвы.

Почвенный воздух является источником кислорода для дыхания корней растений, аэробных микроорганизмов и почвенной фауны.

Почвенный воздух

Это смесь газов и летучих органических соединений, заполняющих поры почвы, свободные от воды. Кислород почвенного воздуха активно участвует в химических реакциях минеральных и органических веществ.

Одни химические элементы, окисляясь, переходят в труднорастворимые формы (железо, марганец), другие приобретают большую растворимость (сера, хром, ванадий), замедляя или ускоряя миграцию химических элементов.

Окисление органического вещества почвы обусловливает круговорот углерода, азота, фосфора, серы и других биологически важных химических элементов.

Почвенный воздух является источником диоксида углерода для растений, используемым в фотосинтезе. От всего количества СО2, идущего на создание урожая, от 38 до 72 % поступает растению из почвы.

Почвенный воздух находится в почве в трех состояниях: свободном, адсорбированном и растворимом.

Свободный почвенный воздух, находясь в крупных некапиллярных и капиллярных порах почвы, свободно перемещается в ней, обеспечивает аэрацию почв и газообмен между почвой и атмосферой.

Защемленный почвенный воздух – воздух, находящийся в порах, со всех сторон изолированный водными пробками. В глинистых почвах содержание защемленного воздуха может достигать 12 % и более, в среднем же 6-8 % общего объема почвы.

Защемленный воздух неподвижен, практически не участвует в газообмене, препятствует фильтрации воды в почве. Вырываясь из пор при защемлении водой, защемленный воздух может вызвать разрушение почвенной структуры.

Адсорбированный почвенный воздух – газы и летучие органические соединения, адсорбированные на поверхности почвенных частиц. Чем более дисперсна почва, тем больше содержит она адсорбированных газов при данной температуре.

Адсорбция газов сильнее проявляется в почвах тяжелого гранулометрического состава, богатых органическим веществом. Газы в зависимости от их свойств адсорбируются в такой последовательности: N2

Состав свободного почвенного воздуха

Первые сведения о составе почвенного воздуха были получены Ж. Буссенго в 1824 г. В первой половине XX в. знания о почвенном воздухе пополнились работами А. Г. Дояренко, Б. Кина, Э. Рассе-ляидр.

Состав свободного почвенного воздуха отличается от атмосферного (табл. 35).

35. Октав атмосферного и почвенного воздуха (в объемных %)

Химический компонент Атмосферный вощух Почвенный воздух
Aзоt (N2) 78,08 78,08-80,24*
Кислород (O2) 20,95 20,9-0,01
Аргон (Ar) 0,93
Диоксид углерода (CO2) 0,03 0,03—20,0
Все остальные (пары Н2O,СН4 и др.) 0,01
* Азот и аргон.

Атмосферный воздух имеет относительно постоянный состав, чего нельзя сказать о почвенном воздухе. В почвенном воздухе меньше содержится кислорода, больше СO2. Изменяется и содержание азота в зависимости от протекания микробиологических процессов.

В болотных и заболоченных почвах почвенный воздух может содержать заметные количества NH3, CH4, H2, H2S. В составе почвенного воздуха постоянно присутствуют летучие органические соединения (Холодный, 1953), образующиеся в процессе жизнедеятельности микроорганизмов.

Среди этих соединений могут быть углеводороды, спирты, сложные альдегиды. Эти вещества могут поглощаться корнями, способствуя росту растений и повышению их жизнедеятельности.

В почвенном воздухе присутствуют также газообразные продукты распада радиоактивных элементов — эманации.

Из всех газов почвенного воздуха наиболее динамичны кислород и диоксид углерода. Различную концентрацию кислорода и диоксида углерода в почвенном воздухе определяют, с одной стороны, интенсивностью потребления кислорода и продуцированием СO2, а с другой — скоростью газообмена между почвенным и атмосферным воздухом.

Выделение СO2 из почвы в приземный слой атмосферы принято называть дыханием почвы. В условиях хорошей аэрации кислорода поглощается почвой больше, чем выделяется углекислоты.

Отношение содержания диоксида углерода в почвенном воздухе к содержанию кислорода называется коэффициентом дыхания.

Для почв с плохим газообменом это отношение больше единицы. В таких почвах идут анаэробные процессы. Часть СO2 может связываться химически с образованием гидрокарбонатов. Этот процесс получил название ретенции С02.

Читайте также:  Чем подкормить томат после посадки

Ретенция зависит от рН: при рН

Воздушные свойства почв

Наиболее важными воздушными свойствами почв являются воздухоемкость, воздухопроницаемость, аэрация.

Воздухоемкость

Максимальное количество воздуха, которое может быть в почве, выраженное в объемных процентах, называют общей воздухоемкостью почв (РО.В.). Ее можно определить по формуле.

Воздухоемкость почв зависит от их гранулометрического состава, сложения, степени оструктуренности.

Различают также капиллярную и некапиллярную воздухоемкость.

Каппилярная воздухоемкость

Капиллярная воздухоемкость характеризует количество почвенного воздуха, размещенного в капиллярных порах. Наибольшей капиллярной воздухоемкостью отличаются тяжелые по гранулометрическому составу бесструктурные плотные почвы.

Для обеспечения нормальной аэрации почв наибольшее значение имеет некапиллярная воздухоемкость, или порозность аэрации, — воздухоемкость межагрегатных пор, трещин, ходов червей, корней. Она связана со свободным почвенным воздухом.

Некапиллярная воздухоемкость

Некапиллярная воздухоемкость при наименьшей влагоемкости имеет особое значение для аэрации. Если воздухоемкость при наименьшей влагоемкости составляет менее 15%, то аэрация почв недостаточная, чтобы обеспечить благоприятный состав почвенного воздуха.

Оптимальные условия для газообмена создаются при содержании воздуха в минеральных почвах 20-25 %, в торфяных – 30-40 %.

Воздухопроницаемость

Способность почвы пропускать через себя воздух называют воздухопроницаемостью. Это свойство определяет скорость газообмена между почвой и атмосферой.

Она зависит от гранулометрического состава почвы, ее структурного состояния, строения порового пространства. В естественных условиях воздухопроницаемость изменяется в широких пределах – от 0 до 1 л/с и выше.

Аэрация или газообмен

Процессы обмена почвенного воздуха с атмосферным называют аэрацией или газообменом. Газообмен осуществляется через систему воздухоносных пор почвы, сообщающихся между собой и с атмосферой.

Газообмен обусловлен несколькими факторами: диффузией, изменением температуры почвы и барометрического давления, изменением количества влаги в почве под давлением осадков, орошением, испарением, влиянием ветра, изменением уровня грунтовых вод или верховодки.

Поступление в почву влаги с осадками или при орошении вызывает сжатие почвенного воздуха, его выталкивание наружу и засасывание атмосферного воздуха.

Изменение температуры почвы и атмосферного давления, ветра и уровня грунтовых вод также вызывает объемные изменения воздуха в почве и, как следствие, влияет на газообмен.

Однако ведущим фактором газообмена в почве является диффузия. Это основной механизм массопереноса газов в почве и газообмена между почвой и атмосферой.

Под диффузией понимают перемещение газов в соответствии с их парциальным давлением. Под влиянием диффузии создаются условия для непрерывного поступления О2 в почву и выделения СО2 в атмосферу.

Коэффициент диффузии равен объёму газа (в см 3 ), проходящего в секунду через 1 см 2 поверхности при мощности слоя 1 см и градиенте концентрации, равном единице.

Коэффициенты диффузии газов в почве (D) и в атмосфере (Do) различны. Через почву диффузия газов протекает в 2-20 раз медленнее, чем в атмосфере. Отношение коэффициента диффузии в почве к коэффициенту диффузии в атмосфере ( ) меньше единицы.

Воздушный режим почвы и его регулирование

Воздушный редким почвы — это совокупность всех явлений поступления воздуха в почву, его передвижения в ней и расхода, а также явлений обмена газами между почвенным воздухом, твердой и жидкой фазами, потребления и выделения отдельных газов живым населением почвы.

Воздушный режим почв подвержен суточной, сезонной, годовой и многолетней изменчивости и находится в прямой зависимости от различных свойств почв, погодных условий, характера растительности, агротехники.

Для нормального произрастания растений необходимо оптимизировать воздушный режим почвы. Улучшение воздушного режима почв особенно важно там, где распространены почвы с временным избыточным увлажнением и при сельскохозяйственном использовании болотных почв.

В почвах легкого гранулометрического состава, а также в суглинистых и глинистых, но обладающих агрономически ценной структурой в верхних горизонтах содержание воздуха поддерживается на высоком уровне (20-25 % объема почвы).

В бесструктурных почвах тяжелого гранулометрического состава содержание почвенного воздуха зависит от состояния и увлажнения почвы. При относительной влажности, равной НВ, содержание воздуха в таких почвах может достигать критической величины (менее 15 % объема почвы).

На бесструктурных почвах суглинистого и глинистого гранулометрического состава нередко образуется почвенная корка. Обладая высокой плотностью и низкой пористостью, почвенная корка уже при влажности 17% (22% объема почвы) препятствует нормальной аэрации.

Поскольку оптимальный воздушный режим в основном зависит от состояния увлажнения почвы, то приемы регулирования водного и других режимов являются и приемами регулирования воздушного режима.

Такие приемы, как окультуривание почв, регулирование их реакции, применение органических и минеральных удобрений, орошение или осушение почв, активизируют биологические процессы в почвах, повышают интенсивность дыхания в них при наличии доступной влаги.

Важными приемами регулирования воздушного режима, особенно на малогумусных почвах тяжелого гранулометрического состава, также являются создание глубокого пахотного слоя, рыхление подпахотного, ликвидация почвенной корки.

Для минеральных почв большое значение в создании оптимального воздушного режима имеет улучшение их гумусного состояния и структуры.

Контрольные вопросы и задания

  1. Дайте понятие почвенного воздуха, назовите его главный состав, отличие от атмосферного воздуха.
  2. В чем значение почвенного воздуха в жизни почвы и продуктивности растений?
  3. Что такое газообмен и какие факторы его определяют?
  4. Перечислите и охарактеризуйте воздушные свойства почвы.
  5. Дайте понятие воздушного режима и охарактеризуйте приемы его оптимизации.

Источник

Adblock
detector