Меню

Реферат тему кислотность почвы

Исследовательская работа на тему » Определение кислотности почвы с помощью природных индикаторов»

Для работы была выбрана тема «Определение кислотности почвы с помощью природного индикатора». Тема рецензируемой работы достаточно актуальна в настоящее время, так как от этой самой кислотности почвы зависит и ее плодородие, и способность растений противостоять болезням, и количество полученного урожая с этой почвы. Проблемой нашего исследования является: можно ли с помощью природных индикаторов определять кислотность почвы. Научно-исследовательская работа структурно выстроена правильно, логична, четко сформулированы цель и задачи, присутствуют моменты исследования научного характера и заключение по работе. Учеником исследован материал, выходящий за рамки школьной программы. Содержание отвечает выбранной теме, которая раскрыта достаточно, учитывая возраст автора работы. Исследовательская работа четко структурирована, грамотно изложена, прослеживается логическая связь между частями работы, отличается завершённостью. Автором использованы общенаучные термины. Практическая значимость исследования заключается в том, что полученные результаты дадут возможность определять кислотность почвы на своем участке в домашних условиях. В работе ученик проявил исследовательские качества, самостоятельность в изучении большого объема специализированной источников информации, компьютерную грамотность в оформлении и создании презентации к защите.

Скачать:

Вложение Размер
prirodnye_indikatory_kislotnost.docx 36.63 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

Сокольниковская средняя общеобразовательная школа

Определение кислотности почвы с помощью природного индикатора

Толстых Анастасия Андреевна,

Глухова Маргарита Павловна,

обучающиеся 9б класса,

Котухова Ирина Владимировна,

2.Влияние кислотности почвы на рост растений………………………. 4 — 7

4.История открытия индикаторов……………………………………………..7 — 8

5. Приготовление природных индикаторов………………………………. 8 — 10

7. Народные способы определения кислотности почвы .………………..…….12

8. Информационные источники……………………………………………….…..13

Нередко можно услышать такие словосочетания как «кислая почва», «кислотность почвы», «рН почвы» от садоводов, которые грамотно подходят к выращиванию овощей и фруктов. Чаще всего многие садоводы-любители понятия не имеют, что такое кислотность почвы и как ее можно изменить и используют все, как есть, а зря…

Поэтому проблемой нашего исследования является: можно ли с помощью природных индикаторов определять кислотность почвы.

Выбранная нами тема актуальна , так как от этой самой кислотности почвы зависит и ее плодородие, и способность растений противостоять болезням, и количество полученного урожая с этой почвы.

Практическая значимость исследования заключается в том, что полученные результаты дадут возможность определять кислотность почвы на своем участке в домашних условиях.

Объекты нашегоисследования являются природные индикаторы, приготовленные своими руками и почва.

Предмет исследования: цвет природных индикаторов в разных средах, кислотность почвы.

Цель нашейработы : определить кислотность почвы с помощью природных индикаторов на садовых участках.

Для достижения этой цели необходимо решить следующие задачи :

  • проанализировать литературу и другие источники информации по данной теме;
  • получить различные природные индикаторы;
  • составить шкалу для каждого индикатора;
  • определить кислотность почвы с помощью природного индикатора.

В работе мы выдвинули следующую гипотезу: е сли растения-антоцианы изменяют цвет в различных средах, то с их помощью можно определять кислотность почвы.

Влияние кислотности почвы на рост растений

Кислотность почвы – это процент содержания ионов водорода в почве. Водородный показатель почвенного раствора является одним из тех факторов, от которых зависит урожайность данного вида культурного растения на данной почве.Так, при культивировании в кислых питательных растворах с водородным показателем 5-5,5 проростки ячменя вообще не развиваются, а гибнут, в то время как картофель именно в этом интервале значений дает особенно богатый урожай.Столь ценная луговая культура, как белый клевер, не может произрастать на кислых почвах, и полное отсутствие его среди полевых трав свидетельствует о кислотности почвы. Как и произрастание сорной травы — молочая, который, наоборот, произрастает только на кислых — почвах. На кислых же почвах особенно обильно и роскошно произрастает щавель, подмаренник и папоротник. Ботаническими индикаторами высокой кислотности почвы служат так же едкий лютик, хвощ, мхи и осока.Свободно пасущиеся коровы и овцы предпочитают питаться кормовыми травами, произрастающими на почвах с кислотностью 6,5,и не пасутся в местах, где она меньше 5.Большое, иногда решающее значение водородный показатель почв имеет для жизнедеятельности почвенной микрофлоры. Если непосредственно под травяным покровом луга вместо твердой почвенной поверхности усматривается слой спутавшихся, полусгнивших травянистых стеблей, это признак того, что почва кислая. На кислых почвах микроорганизмы, разрушающие клетчатку и перерабатывающие ее в темный пористый перегной, почти прекращают свою полезную жизнедеятельность, и стебли растений долго не сгнивают.От величины кислотности почвы зависит усвояемость растениями фосфорных удобрений. Средний фосфат кальция легко усваивается растениями только на кислых почвах.Таким образом, определение водородного показателя почв может иметь существенное значение:

  • для выбора культурного растения, от которого ожидается на данной почве особенно богатый урожай; так, на кислых почвах плохо растут пшеница, капуста, свекла, клевер, в то время как рожь и овес малочувствительны к кислотности почвы;
  • для изменения водородного показателя почвы в сторону, благоприятствующую более высокому урожаю выращиваемой на ней сельскохозяйственной культуры; отсюда становится ясной необходимость составления агрономами карт кислотности почв своего района.

Водородные ионы содержатся в почве обычно в абсорбированном виде — в почвенных катионитах. Поэтому для выявления кислотности химическим путем, с помощью индикаторов, почва взбалтывается не с чистой водой, а с раствором хлористого калия, катионы которого вытесняют ионы водорода из катионитов.Степень кислотности, или щелочности, почв оказывает большое влияние на развитие корней и поступление питательных веществ в растение.Чрезмерный высокий (выше 9) или низкий (ниже 4) pHпочвы токсичен для корней растений. В пределах этих значений pH определяет поведение отдельных питательных веществ, осаждение их или превращение в неусваиваемые растениями формы. В кислых почвах (pH 4.0-5.5) железо, алюминий и марганец находятся в формах доступных растениям, а их концентрация достигает токсического уровня. При этом затруднено поступление в растения фосфора, калия, серы, кальция, магния, молибдена. На кислой почве может наблюдаться повышенный выпад растений без внешних причин — вымочка, гибель от мороза, развитие болезней и вредителей. Напротив, в щелочных (pH 7.5-8.5) железо, марганец, фосфор, медь, цинк, бор и большинства микроэлементов становятся менее доступными растениям.Оптимальным считается pH 6.5 — слабокислая реакция почвы. Это не ведет к недостатку фосфора и микроэлементов, большинство основных питательных веществ доступны растениям, т.е. находится в почвенном растворе. Такая почвенная реакция благоприятна для развития полезных почвенных микроорганизмов, обогащающих почву азотом.
Хотя отдельные виды растений приспособились к существованию в кислой или, наоборот, в щелочной среде, однако большинство растений хорошо развиваются при нейтральной или слабокислой реакции почвы (диапазон pH 6.0-7.0). Следует учитывать, что многие из овощей — салат, капуста кочанная и цветная, свекла, огурцы, лук, спаржа, а также клевер и люцерна — при pH 6.0 и ниже развиваются хуже, чем при реакции близкой к нейтральной. Такую же кислотность предпочитает большинство цветов. Углекислый газ выделяется корнями живых растений при дыхании, а также при распаде органики. Вместе с водой он образует угольную кислоту, которая растворяет соединения кальция и магния, и с дождевыми водами они постепенно вымываются из верхнего слоя почвы в более глубокие слои и почва закисляется. Некоторые минеральные удобрения тоже могут подкислять почву.Как правило отклонения кислотности почвы от нейтральной или слабокислой связаны с нарушением (или приводят к нарушению) баланса питательных веществ доступных растению и угнетению полезной почвенной микрофлоры. Поэтому так важно следить за кислотностью почвы. Для выражения степени кислотности почвы пользуются показателем рН, величина которого колеблется в разных почвах в пределах от 3,5 до 8,0—8,5. Сильнокислые почвы имеют величину рН 3,5—4,0, кислые — 4,0— 5,0, слабокислые — 5,0—6,0, нейтральные — 6,0—7,0, щелочные — 7,0—8,0, сильнощелочные — 8,0—8,5.Овощные культуры по-разному реагируют на кислотность почвы. Большинство из них лучше растет и развивается на почвах с реакцией, близкой к нейтральной. По требованиям к кислотности почвы овощные культуры можно разделить на три группы:

первая — рН от 7 до 7,5 (артишок, капуста кочанная и цветная, морковь, свекла, сельдерей, салат, лук репчатый, спаржа, петрушка);

вторая — рН от 6 до 7 (фасоль, баклажаны, чеснок, капуста листовая, брюссельская, редис, кабачки, свекла листовая, репа, томаты, лук-шнитт, лук-шалот, лук-порей, дыня мускатная, цикорий, огурцы, хрен, шпинат, ревень);

третья — рН от 5 до 6 (тыква, картофель, пастернак, щавель).

Проводить анализ кислотности почвы, с целью определения почвенной кислотности, обычно нужно для того, чтобы мы могли создать самые оптимальные условия для роста и жизнедеятельности растений.Анализ кислотности почвы, как и подготовка садовых земель и приусадебных участков, по результатам анализа кислотности почвы, даст гарантию, что растения, как те, что высаживаются в открытом грунте, так и комнатные, декоративные или экзотические растения получат ту почву, которая будет по кислотности наиболее максимально соответствовать тем природным условиям жизнедеятельности растений, к которым оно привыкло.

История открытия природных индикаторов

Впервые вещества, меняющие свой цвет в зависимости от среды, обнаружил в 17 веке английский химик и физик Роберт Бойль. Чтобы понять, как устроен мир, Бойль провел тысячи опытов. Вот один из них. В лаборатории горели свечи, в ретортах что-то кипело, когда некстати зашел садовник. Он принес корзину с фиалками. Бойль очень любил цветы, но предстояло начать опыт. Он взял несколько цветков, понюхал и положил их на стол. Опыт начался, открыли колбу, из нее повалил едкий пар. Когда же опыт кончился, Бойль случайно взглянул на цветы, они дымились. Чтобы спасти цветы, он опустил их в стакан с водой. И – что за чудеса — фиалки, их темно- фиолетовые лепестки, стали красными. Случайный опыт? Случайная находка? Роберт Бойль не был бы настоящим ученым, если бы прошел мимо такого случая. Ученый велел готовить помощнику растворы, которые потом переливали в стаканы и в каждый опустили по цветку. В некоторых стаканах цветы немедленно начали краснеть. Наконец, ученый понял, что цвет фиалок зависит от того, какой раствор находится в стакане, какие вещества содержатся в растворе. Затем Бойль заинтересовался, что покажут не фиалки, а другие растения. Эксперименты следовали один за другим. Лучшие результаты дали опыты с лакмусовым лишайником. Тогда Бойль опустил в настой лакмусового лишайника обыкновенные бумажные полоски. Дождался, когда они пропитаются настоем, а затем высушил их. Эти хитрые бумажки Роберт Бойль назвал индикаторами, что в переводе с латинского означает «указатель», так как они указывают на среду раствора. Индикаторы — это вещества, которые изменяют свой цвет в зависимости от среды раствора. С помощью индикаторов качественно определяют реакцию среды.

Приготовление природных индикаторов

Из разных источников литературы мы узнали, что приготовить вытяжку красителей можно разными способами – кипячение в воде или экстрагированием каким-либо растворителем, например – спиртом.

Опыт 1. Методика изготовления индикаторов из природного сырья

Для приготовления природных индикаторов взяли по 25г растительного сырья, измельчили, залили 100 мл воды и прокипятили в течение 1-2 минут. Полученные отвары охладили и профильтровали. С целью предохранения от порчи, в полученный фильтрат добавили спирт в соотношении 2:1.

Отвар каждого сырья имеет свой цвет. Следовательно, красители из использованных ягод являются водо-растворимыми и легко переходят в водный раствор. Чтобы продлить действие индикаторов, из них приготовили индикаторные бумажки.

Опыт №2 Исследование изменения цвета природных индикаторов в растворах разных веществ

Нами были взяты растворы 3 солей: хлорида натрия NaCl, карбоната натрия Na 2 CO 3 , хлорида алюминия AlCl 3 , а так же растворы гидроксида натрия NaOH и соляной кислоты HCl. Концентрация всех растворов 5%. Сначала с помощью универсальной индикаторной бумажки определили pH заданных водных растворов. Затем поочерёдно к каждому из 5 растворов были добавлены по 2 капли приготовленного природного индикатора. Во всех пробирках кроме хлорида натрия наблюдалось изменение цвета раствора.

Шкала цветовых переходов вытяжек некоторых растений в различных средах

Источник

Реферат: Поглотительная способность и кислотность почвы

Поглотительная способность и кислотность почвы

1. ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ ПОЧВЫ

При выполнении предыдущих заданий мы убедились в том, что почва имеет весьма сложный состав. Крупные и тонкодисперсные минеральные частицы, остатки животных и растительных организмов, а так же специфические почвенные, органические соединения образуют сложную структуру с обилием пустот и пор разной конфигурации. Пористая почвенная масса, проницаемая для воды и воздуха, является своеобразным природным фильтром. Свойство почвы задерживать, поглощать твердые, жидкие и газообразные вещества, находящиеся в соприкосновении с твердой фазой почвы, называется ее поглотительной способностью (Практикум. 2001).

Эта способность почвы определяется различными причинами. Создатель учения о поглотительной способности почвы академик К.К. Гедройц различал несколько типов поглотительной способности почвы.

Механическая поглотительная способность. При фильтрации воды через почву в почвенных порах и капиллярах задерживаются относительно крупные частицы, взвешенные в поверхностных водах: мелкие частички глины и песка, мелкий органический детритус и т.п. Механическая поглотительная способность почвы обусловливает чистоту ключевых грунтовых вод, образующихся из поверхности вод, мутных от большого количества механических примесей. Явление механической поглотительной способности используется при устройстве искусственных фильтров для очистки воды.

Молекулярно-сорбционная (физическая) поглотительная способность. Обусловливается притяжением отдельных молекул к поверхности твердых почвенных частиц в результате проявления так называемой поверхностной энергии. Интенсивность проявления поверхностной энергии зависит от величины поверхности почвенных частиц и, следовательно, обязана присутствию в почве тонкодисперсных частиц. Эти частицы могут притягивать молекулы газов (например, молекулы водяного пара из воздуха), молекул жидких веществ. В частности, наличие пленочной влаги вокруг почвенных частиц обусловлено поверхностными силами. Наконец, в результате поверхностной энергии почвенными частицами поглощаются недиссоциированные на ионы молекулы веществ, находящихся в виде молекулярного раствора. Например, при прохождении через почву навозной жижи из последней поглощаются молекулы органических соединений вследствие их притяжения к поверхности тонких частиц. В результате этого же явления происходит обесцвечивание неконцентрированных водных растворов анилиновых красок при прохождении их через почву.

Следует подчеркнуть, что сорбированные молекулы не входят в состав твердых частиц, а лишь концентрируются у их поверхности.

Ионно-сорбционная (физико-химическая) илиобменная поглотительная способность , представляющая, по выражению К.К. Гедройца, поглотительную способность в тесном смысле этого слова, заключается в обмене сорбированных ионов тонкодисперсной части почвы на ионы почвенного раствора. Между почвенной высокодисперсной массой (почвенным поглощающим комплексом) и почвенным раствором существует подвижное равновесие. Изменение в составе почвенного раствора вызывает соответственные изменения в составе поглощенных ионов. Особо важное значение в ионном почвенном обмене имеют катионы. Поглощение анионов менее изучено.

Разные типы почв отличаются величиной емкости поглощения и имеют определенный состав поглощенных катионов.

Почвы, поглощенный комплекс которых представлен катионами металлов (преимущественно катионами щелочей и щелочных земель), называются насыщенными. К ним относятся черноземы, каштановые почвы, сероземы и ряд других почв, преимущественно аридных ландшафтов. Почвы, содержащие в составе поглощенного комплекса ион водорода, называются ненасыщенными. Сюда относятся подзолистые почвы, красноземы и другие почвы, преимущественно гумидных ландшафтов.

Величина емкости поглощения почв определяется минеральным составом высокодисперсной части пород, на которых сформированы эти почвы, и содержанием в них гумуса. Как правило, глинистые тяжелые почвы имеют большую емкость поглощения, чем песчаные.

Состав поглощенных катионов влияет на ряд важных свойств почвы. В частности, способность к распадению почвенных агрегатов на механические частицы, максимальная гигроскопичность, высота поднятия воды, пластичность, электропроводность и ряд других качеств почвы являются наибольшими в случае преобладания в поглощенном комплексе натрия. Степень выраженности этих свойств уменьшается при преобладании в поглощенном комплексе калия, магния, кальция. Скорость всасывания воды, прочность структуры почв и некоторые другие показатели будут последовательно уменьшаться при преобладании кальция, магния, калия и натрия.

Химическая поглотительная способность — образование трудно растворимых химических соединений в результате обменных реакций в почвенном растворе. Например, возникновение новообразований гипса в почве протекает следующим образом:

Биологическая поглотительная способность почвы обусловлена присутствием в ней животных и растительных организмов. В процессе своего жизненного цикла растения и животные накапливают некоторые химические элементы, необходимые для нормальной жизнедеятельности организмов. После отмирания последних накопленные элементы частично задерживаются в почве. Таким образом почва постепенно обогащается определенными элементами. например, углеродом, азотом, фосфором и пр., а также некоторыми микроэлементами.

Методы определения химического и биологического поглощении почвы пока не разработаны. Количественный анализ ионносорбционной (обменной) поглотительной способности широко применяется при анализе почвы в виде определения обменных катионов и емкости поглощения.

1.1 КИСЛОТНОСТЬ ПОЧВЫ

Кислотность почв определяется величиной концентрации ионов водорода в почвенном растворе. Вода, в слабой степени подвергаясь электролитической диссоциации, распадается на два иона: Н+ и ОН-. Концентрация этих ионов ничтожная; произведение концентрации

В абсолютно чистой воде должно находиться равное количество

Кислоты, присутствующие в почвенном растворе, повышают концентрацию Н+ -ионов ([Н+] > 10-7) и создают кислую реакцию. Присутствие оснований или щелочей повышает концентрацию ОН+ -ионов и создает щелочную реакцию ([Н+] 7, в кислых -рН 3 . В колбу наливают 125 см 3 дистиллированной воды. Содержимое колбы несколько раз взбалтывают и отстаивают 5 мин.

3. Водную вытяжку фильтруют через без зольный бумажный фильтр в стеклянной воронке.

4. 5 см 3 отфильтрованной водной вытяжки наливают в пробирку и прибавляют затем около 0,25 см 3 универсального индикатора. Жидкость в пробирке окрашивается в определенный цвет. Пробирку встряхивают для равномерного распределения окраски. Пробирку с анализируемым раствором и другую пробирку с таким же количеством дистиллированной воды вставляют в компаратор. При подведении под пробирку с дистиллированной водой различных цветов шкалы Алямовского можно найти цвет эталона, близкий к цвету испытуемого раствора, и определить величину рН.

1.3 ОПРЕДЕЛЕНИЕ рН СОЛЕВОЙ ВЫТЯЖКИ КОЛОРИМЕТРИЧЕСКИМ МЕТОДОМ

1. Воздушно-сухой образец почвы в 20 г. растирают и просеивают через сито с величиной отверстий 1 мм. Затем берут навеску в 20 г. и помещают в коническую колбу емкостью около 100 см 3 .

2. В колбу с почвой наливают 50 см 3 одно нормального раствора КСl, перемешивают в течение 3 мин, закрывают пробкой и ставят на 24 часа.

3. После 24-часового отстаивания пипеткой переносят в пробирку 2,5 см 3 вытяжки, добавляют 0,15 см 3 универсального индикатора и пробирку встряхивают для перемешивания жидкости.

4. Затем определяют величину рН по шкале Алямовского аналогично определению рН водной вытяжки.

РН одно нормального раствора КСl равен 5,6. Если рН солевой вытяжки будет меньше 5,6, это свидетельствует о наличии потенциальной (обменной) кислотности. Наличие обменной кислотности менее 5,5 указывает на то, что почвы нуждаются в известковании.

Повышенная кислотность отрицательно сказывается на развитии и урожайности культурных растений. Для нейтрализации избыточной кислотности применяется известкование почв, т.е. внесение размолотого карбоната кальция в почву. Количество СаСо, необходимое для известкования суглинистых и песчаных почв с одинаковой величиной рН, сильно различается. Это обусловлено значительно большей сорбционной способностью суглинков по сравнению с песками (Практикум. 2001).

Ориентировочно дозы извести можно установить по табл. 3.

Таблица 3. Потребность почв в известковании по величине рН солевой вытяжки

Название: Поглотительная способность и кислотность почвы
Раздел: Рефераты по геологии
Тип: реферат Добавлен 16:51:43 26 апреля 2011 Похожие работы
Просмотров: 3063 Комментариев: 20 Оценило: 2 человек Средний балл: 4 Оценка: неизвестно Скачать
РН солевой вытяжки Дозы СаСОз на гектар, т
для супесей и легких суглинков для средних и тяжелых суглинков
4,5 и менее 4,0 6,0
4,6 3,5 5,5
4,8 3,0 5,0
5,0 2,5 4,5
5,2 2,0 4,0
5,4-5,5 2,0 3,5

2. Морфология почвы и методы ее лабораторного изучения

2.1 МОРФОЛОГИЯ ПОЧВЫ И МЕТОДЫ ЕЕ ЛАБОРАТОРНОГО ИЗУЧЕНИЯ

почва колориметрический кислотность сорбционный

Особенности состава почвы отражаются на ее внешнем облике. Например, цвет почвы в зависимости от количества и состава почвенного гумуса может меняться от интенсивно-черного (при содержании гумуса более 6%, если в его составе преобладают соли гуминовых кислот и гумин) до светло-серого (при содержании гумуса 1,5-2% в случае преобладания солей фульвокислот). Гранулометрический состав, соотношение поглощенных катионов, наличие тех или иных химических соединений — все это отражается на морфологии почв. Особенности состава и обусловленные ими химические и физические свойства почвы унаследованы от почвообразующей породы или приобретены в процессе почвообразования (Практикум. 2001).

Следовательно, имеется тесная взаимосвязь между условиями и процессами почвообразования, с одной стороны, и морфологическими особенностями почвы — с другой. Изучив эту взаимосвязь, можно непосредственно в поле на основании визуальных наблюдений делать обоснованные выводы о процессах, сформировавших почву, и о свойствах, приобретенных почвой в результате этих процессов. Учение о генетической морфологии почв является одним из достижений русского генетического почвоведения.

Изучение характера внешних (морфологических) признаков различных почв в связи с их генезисом (происхождением) является одним из важных методов познания почв.

К морфологическим признакам относятся окраска (цвет) почвы, ее структура, сложение, особенности корневой системы растений, наличие ходов роющих животных, новообразования, включения, мощность. Поскольку почва состоит из нескольких горизонтов, морфологические признаки определяются для каждого горизонта и в итоге сводятся в виде характеристики строения почвенного профиля.

Знакомятся с отдельными морфологическими признаками почвы по коробочным образцам. Строение почвенного профиля изучается на монолитах. Монолит представляет собой образец почвы, вырезанный в виде параллелепипеда из стенки почвенного шурфа на всю мощность почвы без нарушения ее естественного сложения.

2.2 ЦВЕТ (ОКРАСКА) ПОЧВЫ

Окраска — один из важных морфологических признаков почвы. Она зависит от состава почвообразующих пород и типа почвообразования и довольно разнообразна. А.Н. Сабанин указывал, что в почвах можно встретить все цвета и оттенки, от черного до белого, за исключением ярких зеленых и синих. Следует отметить, что и эти цвета иногда можно наблюдать в свежих разрезах болотных почв. По своей окраске многие почвенные типы получили названия «черноземы», «красноземы», «сероземы» и т.д.

Окраска верхнего горизонта почвы обусловлена преимущественно гумусовыми веществами. Интенсивность окраски, как правило, зависит от содержания почвенного перегноя. Красновато-ржавый цвет указывает на присутствие значительного количества различных форм оксида железа (III), образующего самостоятельные минералы или находящегося в своеобразном хемосорбированном состоянии на поверхности тонкодисперсных глинистых минералов. Сизые тона свидетельствуют о наличии оксида железа (II). Черные пятна и прослойки на красновато-буром фоне связаны с гидроксидами марганца. Белесая окраска обычно зависит от относительного накопления тонкозернистых кварцевых зерен, освобожденных от тонких глинистых пленок. Белый цвет обусловливается скоплением карбонатов и сульфатов. В нижних горизонтах почвенного профиля цвет в основном определяется окраской почвообразующих пород, их составом и степенью выветривания. Для внетропических территорий особенно характерны различные оттенки коричнево-бурого цвета благодаря окраске четвертичных отложений – наиболее распространенной группы почвообразующих пород в северном полушарии.

Окраска почвы сильно изменяется от степени влажности и источника освещения, поэтому определение цвета производят по образцам, находящимся в воздушно-сухом состоянии, при рассеянном дневном освещении.

Для унифицирования определений цвета почвы С.А. Захаровым предложен треугольник цветов, в вершинах которого расположен белый, черный и красный цвет, а по сторонам и медианам нанесены названия возможных цветов, производных от смешивания трех основных (рис. 4). 3а границей для определения цвета почв широко используются таблицы Манселла — набор стандартных эталонов цветов, каждый из которых имеет свой индекс. Цвет почвы устанавливают сравнением с эталонами цветов.

Определение цвета на глаз всегда более или менее субъективно. Точная количественная оценка почвы в лабораторных условиях может быть легко получена при помощи фотометра.

Фотометр — прибор, позволяющий определить степень отражения или поглощения световых волн разной длины от изучаемого объекта.

2.3 СТРУКТУРНОСТЬ ПОЧВЫ. СЛОЖЕНИЕ ПОЧВЫ. КОРНЕВАЯ СИСТЕМА И ХОДЫ ЗЕМЛЕРОЕВ. НОВООБРАЗОВАНИЯ И ВКЛЮЧЕНИЯ

Структурность почвы является одним из основных ее морфологических признаков. Под структурностью почвы подразумеваются способность ее распадаться на отдельности, имеющие определенную величину и форму. Эти отдельности называются структурными элементами почвы.

Структурность почвы зависит как от состава почвообразующих пород, так и от типа почвообразования. Бедные глинистыми частицами почвы являются бесструктурными, в глинистых же почвах структурность выражена отчетливо. Поскольку структура почвы зависит от характера почвообразования, отдельным типам почвы соответствует определенная структура.

Структурная отдельность имеет некоторое сходство с кристаллами. Поэтому структурные отдельности подразделяются на следующие три основных типа:

1. Кубовидный тип, у которого отдельность имеет примерно одинаковые размеры по всем трем измерениям. Отдельности этого типа обычно представлены неправильными многогранниками или изометрическими комочками.

2. Призмовидный тип, характеризующийся вытянутостью по вертикальной оси.

3. Плитовидный тип, отличающийся сплюснутостью по вертикальной оси.

Для различных типов почвы характерна определенная структура. Так, зернистая структура типична для чернозема, ореховатая — для серых лесных почв, пластинчатая и листоватая — для подзолистых. Для солонцеватых почв и солонцов характерны столбчатая, грубо призматическая и глыбистая структуры.

Сложение почвы. Под этим термином понимают внешнее выражение порозности и плотности почвы. Характер плотности почвы может быть определен только в поле по сопротивлению, которое бывает при вдавливании ножа в почву. Выделяют сложение почвы: рыхлое (нож входит легко), уплотненное (нож входит с некоторым усилием), плотное (нож входит с трудом).

Характер порозности почвы определяют по величине пор и ширине меж структурных трещин. Обычно встречается сложение следующих видов: мелкозернистое (диаметр пор менее 1 мм), пористое (с более крупными порами), тонко трещиноватое (с шириной трещин менее 3 мм) и трещиноватое (с шириной трещин более 3 мм).

Корневая система и ходы землероев. При описании почвы необходимо отметить, на какую глубину проникают корни различных растений. Например, корни трав сосредоточены преимущественно в верхней (окрашенной) части профиля, в то время как корни деревьев проникают на значительную глубину. Поэтому можно сделать вывод, что корни деревьев существенного участия в образовании гумуса не принимают.

3емлерои интенсивно перемешивают почвенную массу. Ходы роющих животных часто в таком большом количестве пересекают почву, что создают даже специальные почвенные разновидности (например, кротовинный чернозем).

Новообразования. При формировании почвы возникают разнообразные химические соединения. Некоторые из них распределяются сравнительно равномерно по почвенной массе, другие встречаются в виде разного рода скоплений. Морфологически хорошо оформленные, четко обособленные от почвенной массы химические соединения, возникшие в процессе гипергенеза и почвообразования, носят название новообразований. Возникновение новообразований осуществляется в результате самых различных процессов — кристаллизации из раствора, выпадения в виде геля из коллоидных растворов, перекристаллизации гелей, обменных и метасоматических процессов и т.д. Однако поскольку особенности почвенного раствора водной среды, необходимой для возникновения новообразований, формируются в значительной мере в результате деятельности биологических факторов, то и новообразования в известной мере являются функцией (правда прямой, а опосредованной) биогенной деятельности.

Определенные новообразования возникают в строго определенных условиях. Поэтому в процессе образования различных типов почв формируются им соответствующие новообразования. Они являются чрезвычайно тонкими индикатора свидетельствующими о тех условиях, при которых происходило формирование почвы. Изучение новообразований позволяет понять не только процессы, совершающиеся в современных почвах, но и по сохранившимся (реликтовым) новообразованиям можно судить о древних процессах почвообразования. В настоящее время изучение новообразований представляет собой особое направление в почвоведении и учении о гипергенезе.

Морфологически новообразования разнообразны — пленки, сплошные горизонты, землистые массы, корочки, изолированные кристаллы и их сростки, друзы, щетки, конкреции самых различных форм и размеров, пропластки и целые плиты. Не менее разнообразен химический и минералогический состав новообразований. Среди почвенных и гипергенных новообразований есть представители почти всех классов минералов: самородные элементы, сульфиды, галоидные соединен оксиды, нитраты, карбонаты, сульфаты, фосфаты, силикат некоторые другие группы химических соединений.

При почвообразовании в условиях степной зоны почти исчезают железомарганцевые новообразования и железистые силикаты (характерные для лесной и лесостепной зон), но широко представлены карбонатные новообразования и в значительном количестве появляются гипсовые — микрокристаллические друзочки и конкреции.

В условиях сухих степей умеренного климата к карбонатным и гипсовым новообразованиям добавляются водорастворимые (хлориды и сульфаты), образующие тонкие налеты и скопления.

В пустынных условиях гипсовые и хлоридно-сульфатные новообразования являются преобладающими. Там, где близки грунтовые воды, они образуют сростки и друзы кристаллов, крупные конкреции, пласты.

Включения представляют собой четко выделяющиеся элементы почвенной массы, генетически не связанные с процессом почвообразования. К включениям относятся валуны и галька, входящие в состав почвообразующих пород, но практически не затронутые процессом почвообразования; органические остатки — раковины и кости животных; археологические остатки — различные следы культурной деятельности человека.

В процессе почвообразования включения являются инертными телами, однако дают возможность судить о генезисе почвообразующих пород (валуны, органические остатки) и о возрасте почв (археологические остатки).

2.4 ПОЧВЕННЫЙ ПРОФИЛЬ

Наиболее важным морфологическим признаком почвы является ее строение, т.е. закономерное изменение состава и строения почвенной толщи сверху вниз, своего рода слоистость почвы. Эта псевдослоистостъ обусловлена расчленением почвенной толщи на генетические горизонты, составляющие почвенный профиль. Генетические горизонты обособляются постепенно в процессе формирования почвы, но даже в окончательно сформированных почвах эти горизонты, как правило, не имеют резкой границы и постепенно переходит один в другой. В русском почвоведении изучению почвенных профилей традиционно придавалось настолько важное значение, что за границей русское почвоведение одно время называлось профильным. Принцип расчленения почвенной толщи на генетические горизонты был установлен впервые В.В. Докучаевым, им же были введены буквенные обозначения для генетических горизонтов (А; В; С; Д).

В различных типах почв генетические горизонты существенно отличаются, выделяют два типа строения почвенного профиля.

Первый тип строения почвенного профиля характерен для автоморфных почв, формирование которых происходит в условиях возвышенных междуречных пространств, хорошо промываемых фильтрующимися атмосферными осадками. Эти почвы формируются под влиянием атмосферной влаги, систематические нисходящие токи которой обусловливают закономерное перемещение химических элементов вниз. Режим почвенной влаги в этих условиях может быть как промывным, так и непромывным. Амплитуда перемещения соответствует подвижности элементов в конкретных ландшафтно-геохимических условиях.

Иным типом строения профиля обладают гидроморфные почвы, формирование которых происходит в условиях близкого расположения грунтовых вод. В этом случае процесс почвообразования протекает под воздействием грунтовых вод, которые периодически или постоянно обогащают почвенную толщу определенными химическими элементами и создают специфическую геохимическую обстановку. Режим почвенной влаги в этих условиях соответствует выпотному и застойному.

Помимо двух основных типов строения почвенного профиля -автоморфного и гидроморфного, в природе встречаются многочисленные случаи переходного строения профиля почвы. Это объясняется сменой условий автоморфного и гидроморфного почвообразования.

При более детальном изучении строения почвенного профиля внутри основных генетических горизонтов выделяют характерные подгоризонты. Например, в горизонте вмывания подзолистой почвы выделяют подгоризонты В1 , В2 , Вз.

В настоящее время ряд ученых разрабатывает систему более сложной индексировки горизонтов почвенного профиля. Многие почвоведы справедливо рассматривают горизонты почвенного профиля не только как генетические, но и как диагностические. В США разработана оригинальная номенклатура почв, в значительной мере основанная на учете диагностических горизонтов. Недостатком этой номенклатуры является ее сложность.

Сумма мощностей всех горизонтов составляет мощность почвы, или почвенного профиля.

Интересен характер смены генетических горизонтов. Обычно переход между ними очень постепенный, поэтому граница между горизонтами в известной мере условна и представлена не линией, а некоторой переходной полосой. Иногда переход между горизонтами чрезвычайно четкий, но граница при этом бывает не обязательно ровной, а языковатой. В этом случае компоненты верхнего горизонта в виде языков и потеков заходят в пределы нижерасположенного генетического горизонта (Практикум. 2001).

2.5 ОПИСАНИЕ МОНОЛИТОВ

Типы почв различаются как строением профиля, так и другими морфологическими признаками. Подробное описание почвенного профиля в полевых условиях производят по почвенным шурфам. В лабораторных условиях это описание делают по монолитам.

При описании монолита в первую очередь обращаются внимание на строение почвенного профиля и выделяют основные генетические горизонты. Затем визуально изучают каждый генетический горизонт. При этом отмечают морфологические признаки каждого горизонта в следующей последовательности: цвет, структура, сложение, новообразования, включения, наличие корневой системы растений и ходов землероев, характер границ между горизонтами, мощность.

Все данные записывают в тетрадь для лабораторных занятий и делают схематическую, но аккуратную зарисовку изучаемого профиля. Для этого с левой стороны отделяют примерно треть страницы. Рядом с зарисовкой указывают индексы генетических горизонтов.

Студентам следует ознакомиться, прежде всего, с монолитами наиболее распространенных и хорошо изученных типов почв. Для занятий рекомендуется иметь монолиты тундровых почв, подзолов, дерново-подзолистых, серых лесных, черноземов, каштановых, серо-бурых и красноземов, а также солонцов и солончаков. Желательно, чтобы основные типы почв были представлены своими главными подтипами: дерново-подзолистые — монолитами почв различной степени подзолистости, серые лесные — светло-серыми и темно-серыми, черноземы — образцами выщелоченных, типичных (мощных), обыкновенных и южных черноземов и т. д. При отсутствии монолитов можно использовать соответственно подобранные колонки из коробочных образцов.

Ниже представлен образец описания почвенного монолита серых лесных почв.

Профиль серых лесных почв имеет следующие горизонты:

Ао (лесная подстилка, часто отсутствует), А1 (перегнойно-аккумулятивный), А2 (горизонт вымывания), В (горизонт вмывания), С (почвообразующая порода). По мощности горизонта А1 и интенсивности его окраски, а также по степени выраженности горизонта А2 выделяют следующие подтипы серых лесных почв:

1. Светло-серая почва. Мощность горизонта А1 — около 20 см, горизонтА2 хорошо выражен.

2. Серая почва. Мощность горизонта А1 — 30 см, горизонт А2 ясно заметен.

3. Темно-серая почва. Мощность горизонта А1 — 40 см, горизонт А2 отсутствует.

Пример описания монолита серой лесной почвы.

Горизонт А1 — гумусовый горизонт, серого цвета, с обильными корнями трав, структура средне- и мелко комковатая, внизу листоватая, сложение рыхлое. Граница со следующим горизонтом постепенная, устанавливается с трудом. Мощность — от 0 до 25 см.

Горизонт А2 — цвет серый, книзу усиливается бурый оттенок, обильная кремнеземистая присыпка. Структура неясно выраженная листовато-пластинчатая, в верхней части горизонта местами переходящая в столь же плохо выраженную комковатую, а в нижней части — в мелко ореховатую. Сложение уплотненное. Частые мелкие железомарганцевые ортштейны. Переход к нижерасположенному горизонту постепенный. Мощность — от 25 до 45 см.

Горизонт В — цвет коричневато-бурый, книзу коричневый оттенок убывает. Очень хорошо выраженная ореховатая структура, в верхней части горизонта мелкая, а книзу постепенно становится более крупной. Поверхность структурных отдельностей темная, коричнево-бурая благодаря глинистым пленкам, покрывающим отдельности. Внутренняя часть отдельностей имеет более светлый бурый цвет. В верхней части горизонта распространена кремнеземистая присыпка, которая образует глубокие языки (возможно, по ходам давно отмерших древесных корней). Переход к нижерасположенному горизонту очень постепенный. Мощность — от 45 до 136 см.

Горизонт С — цвет бурый, ясная призматическая структура (лессовидный суглинок). Почва определяется как светло-серая лесная (Практикум. 2001).

Источник

Читайте также:  Голубика для домашнего выращивания денис блю
Adblock
detector