Датчик влажности почвы в системах автоматического полива
Многие огородники и садоводы лишены возможности ежедневно ухаживать за посаженными овощами, ягодами, фруктовыми деревьями в силу загруженности по работе или во время отпуска. Тем не менее, растения нуждаются в своевременном поливе. С помощью простых автоматизированных систем можно добиться того, что почва на вашем участке будет сохранять необходимую и стабильную влажность на протяжении всего вашего отсутствия. Для построения огородной системы автополива потребуется основной контрольный элемент – датчик влажности почвы.
Датчик влажности
Датчики влажности также называют иногда влагомерами или сенсорами влажности. Почти все предлагаемые на рынке влагомеры почвы измеряют влажность резистивным способом. Это не совсем точный метод, потому что он не учитывает электролизные свойства измеряемого объекта. Показания прибора могут быть разными при одной и той же влажности грунта, но с разной кислотностью или содержанием солей. Но огородникам-экспериментаторам не столь важны абсолютные показания приборов, как относительные, которые можно настроить для исполнительного устройства подачи воды в определенных условиях.
Суть резистивного метода заключается в том, что прибор измеряет сопротивление между двумя проводниками, помещенными в грунт на расстоянии 2–3 см друг от друга. Это обычный омметр, который входит в любой цифровой или аналоговый тестер. Раньше такие инструменты называли авометрами.
Также существуют приборы со встроенным или выносным индикатором для оперативного контроля над состоянием почвы.
Легко сделать замер разницы проводимости электрического тока перед поливом и после полива на примере горшка с домашним растением алоэ. Показания до полива 101.0 кОм.
Показания после полива через 5 минут 12.65 кОм.
Но обычный тестер лишь покажет сопротивление участка почвы между электродами, но не сможет помочь в автополиве.
Принцип действия автоматики
В системах автополива обычно действует правило «поливай или не поливай». Как правило, никто не нуждается в регулировании силы напора воды. Это связано с использованием дорогостоящих управляемых клапанов и других, ненужных, технологически сложных, устройств.
Почти все предлагаемые на рынке датчики влажности, помимо двух электродов, имеют в своей конструкции компаратор. Это простейший аналого-цифровой прибор, который преобразует входящий сигнал в цифровую форму. То есть при установленном уровне влажности вы получите на его выходе единицу или ноль (0 или 5 вольт). Этот сигнал и станет исходным для последующего исполнительного устройства.
Для автополива наиболее рациональным будет использование в качестве исполнительного устройства электромагнитного клапана. Он включается в разрыв трубы и может также использоваться в системах микро-капельного орошения. Включается подачей напряжения 12 В.
Для простых систем, работающих по принципу « датчик сработал — вода пошла», достаточно использование компаратора LM393. Микросхема представляет собой сдвоенный операционный усилитель с возможностью получения на выходе командного сигнала при регулируемом уровне входного. Чип имеет дополнительный аналоговый выход, который можно подключить к программируемому контроллеру или тестеру. Приблизительный советский аналог сдвоенного компаратора LM393 — микросхема 521СА3.
На рисунке представлено готовое реле влажности вместе с датчиком в китайском исполнении всего за 1$.
Ниже представлен усиленный вариант, с выходным током 10А при переменном напряжении до 250 В, за 3–4$.
Системы автоматизации полива
Если вас интересует полноценная система автополива, то необходимо задуматься о приобретении программируемого контроллера. Если участок небольшой, то достаточно установить 3–4 датчика влажности для разных типов полива. Например, сад нуждается в меньшем поливе, малина любит влагу, а для бахчи достаточно воды из почвы, за исключением чрезмерно засушливых периодов.
На основании собственных наблюдений и измерений датчиков влажности можно приблизительно рассчитать экономичность и эффективность подачи воды на участках. Процессоры позволяют вносить сезонные корректировки, могут использовать показания измерителей влажности, учитывают выпадение осадков, время года.
Некоторые датчики влажности почвы оснащены интерфейсом RJ-45 для подключения к сети. Прошивка процессора позволяет настроить систему так, что она будет оповещать о необходимости полива через социальные сети или SMS-сообщением. Это удобно в тех случаях, когда невозможно подключить автоматизированную систему полива, например, для комнатных растений.
Для системы автоматизации полива удобно использовать контроллеры с аналоговыми и контактными входами, которые соединяют все датчики и передают их показания по единой шине к компьютеру, планшету или мобильному телефону. Управление исполнительными приборами происходит через WEB-интерфейс. Наиболее распространены универсальные контроллеры:
Это гибкие устройства, позволяющие точно настроить автоматический полив в теплице, и можно доверить им полный контроль над садом и огородом.
Простая схема автоматизации полива
Простейшая система автоматизации полива состоит из датчика влажности и управляющего устройства. Можно изготовить датчик влажности почвы своими руками. Понадобится два гвоздя, резистор с сопротивлением 10 кОм и источник питания с выходным напряжением 5 В. Подойдет от мобильного телефона.
В качестве прибора, который выдаст команду к поливу можно использовать микросхему LM393. Можно приобрести готовый узел или собрать его самостоятельно, тогда понадобятся:
- резисторы 10 кОм – 2 шт;
- резисторы 1 кОм – 2 шт;
- резисторы 2 кОм – 3 шт;
- переменный резистор 51–100 кОм – 1 шт;
- светодиоды – 2 шт;
- диод любой, не мощный – 1 шт;
- транзистор, любой средней мощности PNP (например, КТ3107Г) – 1 шт;
- конденсаторы 0.1 мк – 2 шт;
- микросхема LM393 – 1 шт;
- реле с порогом срабатывания 4 В;
- монтажная плата.
Схема для сборки представлена ниже.
После сборки подключите модуль к блоку питания и датчику уровня влажности почвы. На выход компаратора LM393 подсоедините тестер. С помощью построечного резистора установите порог срабатывания. Со временем нужно будет его откорректировать, возможно, не один раз.
Принципиальная схема и распиновка компаратора LM393 представлена ниже.
Простейшая автоматизация готова. Достаточно подключить к замыкающим клеммам исполнительное устройство, например, электромагнитный клапан, включающий и отключающий подачу воды.
Исполнительные устройства автоматизации полива
Основным исполнительным устройством автоматизации полива является электронный клапан с регулировкой потока воды и без. Вторые дешевле, проще в обслуживании и управлении.
Хорошо зарекомендовали себя клапаны производства американской компании Hunter. Для разных целей используются клапаны c проходным диаметром 1, 1.5, и 2 дюйма с наружной или внутренней резьбой.
Существует множество управляемых кранов и других производителей.
Если на вашем участке случаются проблемы с подачей воды, приобретайте электромагнитные клапаны с датчиком потока. Это предотвратит выгорание соленоида при падении давления воды или прекращении водоснабжения.
Недостатки автоматических систем полива
Почва неоднородна и отличается по своему составу, поэтому один датчик влажности может показывать разные данные на соседних участках. Кроме того, некоторые участки затемняются деревьями и более влажные, чем те, которые расположены на солнечных местах. Также значительное влияние оказывает приближенность грунтовых вод, их уровень по отношению к горизонту.
Используя автополив для цветов, следует учитывать ландшафт местности. Участок можно разбить на сектора. В каждом секторе установить один или более датчиков влажности и рассчитать для каждого собственный алгоритм работы. Это значительно усложнит систему и вряд ли удастся обойтись без контроллера, но впоследствии почти полностью избавит вас от траты времени на нелепое стояние со шлангом в руках под знойным солнцем. Почва будет наполняться влагой без вашего участия.
Построение эффективной системы автоматизированного полива не может основываться только на показаниях датчиков влажности почвы. Непременно следует дополнительно использовать температурные и световые сенсоры, учитывать физиологическую потребность в воде растений разных видов. Необходимо также учитывать сезонные изменения. Многие компании производящие комплексы автоматизации полива предлагают гибкое программное обеспечение для разных регионов, площадей и выращиваемых сельскохозяйственных культур.
Приобретая систему с датчиком влажности, не поддавайтесь на глупые маркетинговые слоганы: наши электроды покрыты золотом. Даже если это так, то вы лишь обогатите почву благородным металлом в процессе электролиза пластин и кошельки не очень честных бизнесменов.
Заключение
В данной статье рассказывалось о датчиках влажности почвы, которые являются основным контрольным элементом автоматического полива. А также был рассмотрен принцип действия системы автоматизации полива, которую можно приобрести в готовом виде или собрать самому. Простейшая система состоит из датчика влажности и управляющего устройства, схема сборки которой своими руками также была представлена в этой статье.
Видео по теме
Источник
Как работает датчик влажности почвы, и его взаимодействие с Arduino
Когда вы слышите термин «умный сад», вам приходит в голову система, которая измеряет влажность почвы и автоматически поливает ваши растения.
С этим типом системы вы можете поливать растения только при необходимости и избегать чрезмерного или недостаточного полива.
Если вы хотите построить такую систему, вам обязательно понадобится датчик влажности почвы.
Как работает датчик влажности почвы, и его взаимодействие с Arduino
Как работает датчик влажности почвы?
Работа датчика влажности почвы довольно проста.
Вилка в форме зонда с двумя открытыми проводниками действует как переменный резистор (потенциометр), сопротивление которого изменяется в зависимости от содержания воды в почве.
Рисунок 1 – Работа датчика влажности почвы
Это сопротивление обратно пропорционально влажности почвы:
- большее количество воды в почве означает лучшую проводимость и приводит к снижению сопротивления;
- меньшее количество воды в почве означает худшую проводимость и приводит к повышению сопротивления.
Датчик выдает выходное напряжение в соответствии с сопротивлением, измеряя которое мы можем определить уровень влажности.
Обзор аппаратного обеспечения
Типовой датчик влажности почвы состоит из двух компонентов.
Датчик содержит вилочный зонд с двумя открытыми проводниками, который погружается в почву или в любое другое место, где должно измеряться содержание воды.
Как сказано выше, он действует как переменный резистор, сопротивление которого изменяется в зависимости от влажности почвы.
Рисунок 2 – Зонд датчика влажности почвы
Модуль
Датчик также содержит электронный модуль, который соединяет датчик с Arduino.
В соответствии с сопротивлением датчика модуль выдает выходное напряжение, которое доступно на выводе аналогового выхода (AO).
Этот же сигнал подается на высокоточный компаратор LM393 для его оцифровки, с выхода которого сигнал подается на вывод цифрового выхода (DO).
Рисунок 3 – Регулировка чувствительности датчика влажности почвы
Для регулировки чувствительности цифрового выхода (DO) модуль содержит встроенный потенциометр.
С помощью этого потенциометра вы можете установить пороговое значение; таким образом, когда уровень влажности превысит пороговое значение, модуль выдаст низкий логический уровень, в остальных случаях на цифровой выход будет подаваться высокий логический уровень.
Эта настройка очень полезна, когда вы хотите инициировать действие при достижении определенного порога. Например, когда уровень влажности в почве пересекает пороговое значение, вы можете активировать реле, чтобы начать перекачивание воды. Вот вам идея!
Совет: поверните движок потенциометра по часовой стрелке, чтобы увеличить чувствительность, или против часовой стрелки, чтобы уменьшить ее.
Рисунок 4 – Светодиодные индикаторы питания и состояния почвы
Помимо этого, модуль имеет два светодиода. Индикатор питания загорится, когда на модуль будет подано напряжение питания. Светодиод состояния загорится, когда на цифровой выход будет подаваться низкий логический уровень.
Распиновка датчика влажности почвы
Датчик влажности почвы очень прост в использовании и содержит только 4 вывода для связи с внешним миром.
Рисунок 5 – Распиновка датчика влажности почвы
AO (аналоговый выход) выдает аналоговый сигнал с напряжением в диапазоне между напряжением питания и 0 В и будет подключен к одному из аналоговых входов нашей платы Arduino.
Вывод DO (цифровой выход) выдает цифровой выходной сигнал со схемы встроенного компаратора. Вы можете подключить его к любому цифровому выводу на Arduino или напрямую к 5-вольтовому реле или подобному устройству.
Вывод VCC подает питание на датчик. Рекомендуется питать датчик напряжением от 3,3 до 5 В. Обратите внимание, что сигнал на аналоговом выходе будет зависеть от того, какое напряжение питания подается на датчик.
GND для подключения земли.
Измерение влажности почвы с помощью аналогового выхода
Поскольку модуль предоставляет как аналоговый, так и цифровой выходные сигналы, то для нашего первого эксперимента мы будем измерять влажность почвы, считывая аналоговые показания.
Подключение
Давайте подключим наш датчик влажности почвы к плате Arduino.
Сначала вам нужно подать питание на датчик. Для этого вы можете подключить вывод VCC на модуле к выводу 5V на Arduino.
Однако одной из широко известных проблем с этими датчиками является их короткий срок службы при воздействии влажной среды. При постоянной подаче питания на зонд скорость коррозии значительно увеличивается.
Чтобы преодолеть эту проблему, мы рекомендуем не подавать питание на датчик постоянно, а включать его только тогда, когда вы снимаете показания.
Самый простой способ сделать это – подключить вывод VCC к цифровому выводу Arduino и устанавливать на нем высокий или низкий логический уровень, когда это необходимо.
Кроме того, итоговая мощность, потребляемая модулем (оба светодиода горят), составляет около 8 мА, поэтому можно запитать модуль от цифрового вывода на Arduino.
Итак, давайте подключим вывод VCC модуля к цифровому выводу 7 Arduino, а вывод GND модуля к выводу GND Arduino.
И, наконец, подключите вывод AO модуля к выводу A0 аналого-цифрового преобразователя Arduino.
Схема соединений показана на рисунке ниже.
Рисунок 6 – Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе
Калибровка
Чтобы получить точные показания с датчика влажности почвы, рекомендуется сначала откалибровать его для конкретного типа почвы, которую вы планируете контролировать.
Различные типы почвы могут по-разному влиять на показания датчика, поэтому ваш датчик в зависимости от типа используемой почвы может быть более или менее чувствительным.
Прежде чем вы начнете хранить данные или запускать события, вы должны увидеть, какие показания вы на самом деле получаете от вашего датчика.
Чтобы отметить, какие значения выводит ваш датчик, когда почва максимально сухая, и когда она полностью насыщена влагой, воспользуйтесь скетчем, приведенным ниже.
Когда вы запустите этот скетч, вы увидите похожие значения в мониторе последовательного порта:
850, когда почва сухая;
400, когда почва полностью насыщена влагой.
Рисунок 7 – Калибровка датчика влажности почвы
Этот тест может потребовать несколько проб и ошибок. Как только вы получите хороший контроль над этими показаниями, вы сможете использовать их в качестве пороговых значений, если намерены инициировать какое-либо действие.
Финальная сборка
Основываясь на значениях калибровки, программа, приведенная ниже, задает следующие диапазоны для определения состояния почвы:
- 750 – достаточно сухая для полива.
Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.
Рисунок 8 – Вывод аналоговых показаний датчика влажности почвы
Измерение влажности почвы с помощью цифрового выхода
Для нашего второго эксперимента мы определим состояние почвы с помощью цифрового выхода.
Подключение
Мы будем использовать схему из предыдущего примера. На этот раз нам просто нужно удалить подключение к выводу аналого-цифрового преобразователя и подключить вывод DO модуля к цифровому выводу 8 Arduino.
Соберите схему, как показано ниже:
Рисунок 9 – Подключение датчика влажности почвы к Arduino для считывания показаний на цифровом выходе
Калибровка
Для калибровки цифрового выхода (DO) модуль имеет встроенный потенциометр.
Вращая движок этого потенциометра, вы можете установить пороговое значение. Таким образом, когда уровень влажности превысит пороговое значение, светодиод состояния загорится, и модуль выдаст низкий логический уровень.
Рисунок 10 – Состояния цифрового выхода датчика влажности почвы
Теперь, чтобы откалибровать датчик, вставьте зонд в почву, когда ваше растение будет готово к поливу, и подстройте потенциометр по часовой стрелке так, чтобы светодиод состояния горел, а затем подстройте потенциометр обратно против часовой стрелки, пока светодиод не погаснет.
Теперь ваш датчик откалиброван и готов к использованию.
Код Arduino
После того, как схема будет собрана, загрузите в Arduino следующий скетч.
Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.
Рисунок 11 – Вывод цифровых показаний датчика влажности почвы
Источник