Меню

Сенсор влажности для почвы

Датчик влажности почвы (ёмкостный): инструкция по использованию и примеры

Ёмкостный сенсор влажности почвы пригодиться для создания систем автоматического полива растений. Датчик не даст засохнуть комнатным цветкам и флоре на огороде.

Принцип работы

Ёмкостный датчик выполнен в виде штыря, которым погружается в грунт на расстояние до 80 мм. На штыре в виде дорожек расположены два электрода, но в отличии от резистивной модели, электроды ёмкостного сенсора защищены токоизолирующей маской и неподвержены коррозии.

Внутри ёмкостного датчика находится RC-генератор на таймере 555, частота которого зависит от ёмкости между двумя электродами, которые выполняю роль конденсатора. Изменение влажности грунта сказывается на его диэлектрических свойствах и меняет ёмкость, что приводит к повышению или понижению выходного сигнала датчика. Итоговое напряжение пропорционально степени влажности почвы.

Пример работы для Arduino и XOD

В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например Arduino Uno.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Arduino. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Arduino Uno методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Код для Arduino IDE

Прошейте платформу Arduino скетчем приведённым ниже.

После загрузки скетча, в Serial-порт будут выводиться текущие показания сенсора в 10-битном диапазоне.

Источник

Датчик влажности почвы (резистивный): инструкция по использованию и примеры

Используйте резистивный сенсор влажности почвы для создания систем автоматического полива растений. Датчик подойдёт для ухода за комнатными цветками и флоре на огороде. Не дайте своим растениям засохнуть!

Принцип работы

Датчик для измерения влажности почвы выполнен в виде вилки с двумя электродами, которыми погружается в грунт на расстояние до 40 мм. При подключении питания на электродах создаёться напряжение. Если почва сухая, её сопротивление велико и через датчик между электродами течёт слабый ток. Если земля влажная — её сопротивление становится меньше, а ток датчика между электродами соответственно увеличивается. По итоговому аналоговому сигналу можно судить о степени увлажнения почвы.

Максимальное напряжение на выходе S не превышает 75% от напряжения питания модуля V , т.е. сигнальный диапазон датчика равен:

На показания датчика также влияют следующие факторы:

Электроды датчика покрыты золотом, чтобы предотвратить пассивную коррозию, когда он выключен. Избавиться от электролитической коррозии, вызванной протекающим током, невозможно, поэтому сенсор резистивного типа рекомендуется запитывать через силовой ключ. То есть, включать его только на время измерений, чтобы максимально продлить ресурс. В плане эксплуатации это доставляет неудобство, поэтому рекомендуем обратить внимания на ёмкостный датчик влажности почвы, который в силу своего исполнения неподвержен корозии.

Пример работы для Arduino и XOD

В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например Arduino Uno.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Arduino. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Arduino Uno методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Код для Arduino IDE

Прошейте платформу Arduino скетчем приведённым ниже.

После загрузки скетча, в Serial-порт будут выводиться текущие показания сенсора в 10-битном диапазоне.

Патч для XOD

После загрузки прошивки, в отладочной ноде watch будут выводиться текущие показания сенсора в диапазоне от 0 до 0,75:

Пример для Espruino

В качестве мозга для считывания показаний с датчика рассмотрим платформы из серии Espruino, например Iskra JS.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Iskra JS. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Iskra JS методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Читайте также:  Сбор урожая овощей по месяцам

Исходный код

Прошейте платформу Iskra JS скриптом приведённым ниже.

После загрузки скрипта, в консоль будут выводиться текущие показания сенсора в диапазоне от 0 до 75%.

Пример для Raspberry Pi

В качестве мозга для считывания показаний с датчика рассмотрим одноплатные компьютеры Raspberry Pi, например Raspberry Pi 4.

Схема устройства

К сожалению в компьютере Raspberry Pi нет встроеенного аналого-цифрового преобразователя. Используйте плату расширения Troyka Cap, которое добавит малине аналоговые пины.

Подключите датчик влажности почвы к Raspberry Pi через плату расширения Troyka Cap к 3 пину. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Программная настройка

Исходный код

Запустите скрипт на малине приведённым ниже.

После загрузки скрипта, в консоль малины будут выводиться текущие показания сенсора в диапазоне от 0 до 75%.

Элементы платы

Измерительные электроды

Датчик построен на основе транзисторного усилителя тока. Для измерения влажности почвы на датчике расположены два электрода, которые для проведения измерений необходимо воткнуть в почву. Электроды подключены в цепь между коллектором (точка SP) и базой (точка SN) встроенного транзистора на плате MMBT2222ALT1G.

При изменении влажности почвы, меняется сопротивление между базой и коллектором, к которому подключен положительный полюс источника питания. Соответственно меняется и протекающий ток от коллектора через эмиттер на землю. В результате изменяется и выходное аналоговое напряжение сенсора (точка OUT). Подробности найдёте на принципиальной схеме датчика.

Troyka-контакты

Датчик подключается к управляющей электронике через три провода.

Источник

Беспроводной DIY монитор влажности почвы

Приветствую всех читателей Хабра! Сегодня хочу поделится с вами моим новым проектом — беспроводным датчиком влажности почвы, который построен на основе всем известного модуля влажности почвы с алиэкспрес. Новый датчик это логическое продолжение первого моего DIY проекта на эту тему. Но в новой реализации это уже не ардуино модуль, а законченный девайс с своим собственным корпусом. Итак, каша из топора, часть вторая! 🙂

Китайский модуль измерения влажности почвы построен на таймере 555. Метод измерения — емкостной. Для моего проекта нужна была версия модуля с установленным стабилизатором напряжения XC6206P332 на 3.3В, который в дальнейшем придется удалить с платы модуля. Дело в том что в таких версиях используемся модификация таймера TLC555 с нижним порогом по питанию в 2В. В версиях без стабилизатора используются таймеры NE555 c нижним порогом по питанию в 5В. Но в любом случае что проще купить для повторения этого проекта дело повторяющего. В первом варианте выпаиваем стабилизатор напряжения, во втором меняем таймер например на такой — LMC555 (даташит) работающий даже от 1.5В. Для беспроводного модуля к китайскому датчику влажности почвы я выбрал радиомодуль от EBYTE E73C на котором установлен чип nRF52840. Аргументом стала цена модуля и имеющееся количество данных модулей у меня в запасах.

Беспроводной модуль получился очень простой, RGB светодиод, пара кнопок, полевой транзистор, батарейка. Собрать такой девайс сможет даже самый неопытный начинающий паяльщик. На датчике влажности помимо удаления стабилизатора напряжения так же необходимо выпаять разъем и впаять на его место штырьевую вилку 3P, шаг 2.54 мм.

Размеры платы получились немного меньше чем в первом проекте — 42х29мм, определялись размером держателя батарейки.

Корпус был напечатан на моем бытовом SLA принтере ANYCUBIC. Время печати деталей порядка пары часов. Последующая пост обработка заняла около получаса. Стоимость израсходованной полимерной смолы

Потребление в режиме сна — 4.7мкА, в режиме передачи 8мА. Интервал замеров изменяемый, шаг 1 минута. Время измерения 50мс (5 замеров в тестовой программе), потребление во время измерения

1 мА. Так же производятся измерение температуры чипа, измерение уровня заряда батарейки. Передача данных на контролер УД посредством сети Mysensors, передача данных на контролер УД посредством сети Zigbee.

Читайте также:  План ритма недели эпохи урожая

Код тестовых программ находится на моем Github

Пример работы в сети Mysensors и УД Мажордомо

Пример работы в сети ZigBee и УД Мажордомо

Код настройки конвертора в модуле zigbee2mqtt для датчика влажности (пока не уверен, что это верное решение).

Тестовую прошивку написал один из участников нашего DIY сообщества — Lenz, вот его GIthub.

Стоимость компонентов которые пришлось добавить к китайскому влагомеру составила порядка 400-500 рублей. На мой взгляд вполне неплохо.

Видео работы датчика

Дальнейшие планы на этот проект. Хочется заменить МК на что то более простое, например на nRF52810 или nRF52811, но всё будет упирается в цену, скорее всего придется отказаться от радиомодулей и сделать просто на чипе. Возможно подумаю добавить зуммер, вполне вероятно стабилизатор питания, так как сейчас необходимо учитывать напряжение питания при замере. Довести до стабильного состояния Zigbee версию, сделать BLE версию, сделать мобильное приложение-показометр. Вообщем точно будет что-то еще.

Если вас заинтересовал данный проект, предлагаю зайти в группу телеграмм, там всегда будет оказана помощь в освоении протокола Майсенсорс, Zigbee, BLE на nRF5, помогут освоить программирование nRF52 в Ардуино ИДЕ и не только в ней.

Источник

DIY Zigbee датчик влажности почвы

Приветствую читателей Habr! Хочу поделиться с вами своим очередным проектом, сегодня речь пойдёт о небольшом датчике измерения влажности почвы на чипе СС2530. Проект основывается на разработке с открытым исходным кодом DIYRUZ Flower, разработчик @anonymass. Измерение влажности почвы у датчика осуществляется ёмкостным методом, работает от батарейки CR2450 или CR2477, есть защита от переполюсовки батарейки, датчик предназначен для работы в сетях Zigbee.

Я уже давно посматривал в сторону Zigbee, огромное количество недорогих фабричных устройств, появившихся в последние годы и скорость с которой после появления проекта zigbee2mqtt эта технология стала захватывать умы домашних автоматизаторов, отличные DIY-проекты, которые во многом так же стали драйвером этой популярности, все эти факты просто кричали тебе туда надо.

Почти сразу как я обзавёлся небольшим количеством фабричных и DIY устройств и запустив у себя Zigbee сеть мне захотелось сделать что-то под себя. Родившаяся идея сделать датчик влажности почвы органично вписалась в мои планы, так как я как раз заканчивал тесты другого своего проекта аналогичного датчика на nRF52 c e-ink экраном. Компактные размеры и внешний вид это всё что закладывалось из требований в будущий проект, а заготовка под эти требования у меня, получается, уже была.

Потратив пару часов на переработку проекта на nRF52 железная часть проекта на CC2530 была готова:

Опираясь на опыт (хоть и скромный, так как я не агроном) в повседневном использовании таких датчиков на подоконниках и с учётом параметров потребления у чипов CC2530 в датчике был заложен минимальный функционал, исключительно измерение уровня влажности почвы. Плата датчика получился в размерах 137мм х 20мм, для удобства сборки электронные компоненты располагаются на одной стороне платы, за исключением держателя батарейки, который напаивается на обратную сторону платы. Датчик имеет светодиод, пару кнопок, порт программирования, простую защиту от переполюсовки батарейки на транзисторе. Время сборки датчика при ручной пайке составляет 10-15 минут, схема датчика состоит всего из 10 элементов, включая радиомодуль.

Если сборка датчика занимает 10-15 минут, то изготовление корпуса этим, к сожалению, похвастаться не может.

С разработкой модели корпуса особых проблем не было, так как за основу также был взят корпус от проекта датчика влажности почвы на nRF52 c e-ink. Пара штрихов в редакторе и корпус стал немного тоньше и без выреза под экран, ещё парой штрихов корпус был дополнен окном для индикации расположенного на плате светодиода. Сделал сразу два варианта задней крышки под батарейку CR2450 и CR2477. Печать всех трёх деталей корпуса занимает чуть больше часа. На этом лёгкая часть с корпусом заканчивается, далее начинается грустная история, шлифовка, сверловка, заливка жидким УФ полимером индикаторного отверстия под светодиод, полировка. На всё это времени было потрачено около полутора двух часов. Наверное, как самый хороший и правильный вариант изготовления корпуса стоит рассматривать просто печать корпуса на хорошо настроенном принтере, уверен результат будет не хуже.

Читайте также:  Подкормка ком растений дрожжами

Основа программной части проекта это популярный проект DIYRUZ Flower. Я определённо не программист, мой багаж — это опыт пары лет программирования в Arduino, который в принципе позволил мне прочитать код проекта и разобраться в нём. Трудным моментом, пожалуй, можно отметить настройку среды для разработки. Но описание проблем с которыми столкнулся, опущу, в этой статье просто приведу пару ссылок на мануалы и статьи, на которые я опирался (ссылка 1, ссылка 2, ссылка 3) и также поблагодарю неравнодушных к чужим проблемам участников чата ZIGDEV, помогавших советами. Изменения, которые я внёс в код оригинального проекта: увеличение интервала чтения сенсора влажности почвы до 1 часа, хранение предыдущих значений влажности почвы для сравнения с новыми значениями и отправки данных в сеть только при изменении значений на 1%. Добавлено чтение внутреннего температурного сенсора CC2530, сравнение, и отправка данных при изменении температуры на 1°С. Конечно, точность температуры с внутреннего температурного сенсора имеет большую погрешность, но в целом даёт понимание об изменении температуры воздуха. Точнее, этот параметр можно откалибровать в конверторе zigbee2mqtt, правда, особой (и не особой) нужды я в этом не увидел.

Так выглядит передача данных об уровне влажности почвы, запрос уровня влажности почвы через модуль Телеграм в Мажордомо

Проблема с которой я столкнулся при тестировании

Об этом решил упомянуть, уверен это кому-то поможет быстрее найти решение, столкнувшись с чем-то похожим. Вопрос, возникший при тестировании датчиков, вызывал непонимание в каком направлении копать, рождал разнообразные теории магического характера :). Суть проблемы была в том, что датчики при слабом сигнале (linkquality ▍ На своём GITHUB для желающих повторить я выложил гербер файлы проекта для заказа плат, список компонентов, схему, модели корпуса, исходники проекта, скомпилированные файлы программы для прошивки радиомодулей.

Устройство уже добавлено в список поддерживаемых на гитхабе проекта zigbee2mqtt, автор проекта очень оперативно реагирует на pull requests.

Немного о грустном в этом направлении, я использую Мажордомо в качестве системы умного дома у себя, для этой системы написан замечательный модуль z2m, к сожалению, мой pull request висит там не рассмотренным уже месяц, так что пока на своём гитхаб я написал инструкцию о том, где необходимо внести изменения чтобы вывод информации о датчике в мажордомо заиграл красками :).

Такая же печальная история с другим проектом — SLS шлюз. Я планировал на даче развернуть сеть Zigbee управляемую через шлюз SLS, протестировать его, погонять свои датчики, поделится своими впечатлениями. Но мне так и не удалось получить обещанную прошивку с поддержкой моего датчика, наверное, забыли, а внешние конверторы в этом проекте не поддерживаются :(.

Если вы как и я, хотите понять, что такое Zigbee, попытаться сделать свои первые DIY Zigbee устройства, то приглашаю вас в чат для разработчиков zigbee девайсов/прошивок ZIGDEV

Если вам интересно всё, что связано с DIY, вы являетесь DIY разработчиком или хотите только начать, вы заинтересованы в использовании DIY девайсов и хотите узнавать первыми о моих проектах, то приглашаю всех в телеграм чат — DIYDEV.

Так же приглашаю читателей обсудить это и любые другие устройства в самый главный Телеграм-чат по Zigbee.

Источник

Adblock
detector