Меню

Сколько физических фаз составляют почву

Почва — четырехфазная система

Почва состоит из четырех фаз: твердой, жидкой, газовой и живой. Твердая фаза почвы — это полидисперсная органоминеральная система, состоящая из первичных, вторичных минералов и органических веществ растительного и животного происхожде­ния, а также продуктов их взаимодействия. Она наименее дина­мична и образует каркас для других фаз, характеризуется опреде­ленными морфологическими признаками, гранулометрическим, минералогическим и химическим составом.

Жидкая фаза почвы— это вода, занимающая часть порового пространства, поступающая в виде атмосферных осадков и из грунтовых вод, содержащая растворенные органические и мине­ральные вещества и потому названная почвенным раствором. Почвенный раствор характеризуется определенным химическим со­ставом, кислотно-щелочными и окислительно-восстановительны­ми параметрами и другими показателями. Ему принадлежит веду­щая роль в химических, биологических, биохимических и других процессах, протекающих в почвах в вертикальном и латеральном (боковом) переносе веществ. Он является непосредственным ис­точником питания растений. Жидкая среда динамична, продукты ее функционирования обновляются в течение суток.

Газовая фаза почвы — это почвенный воздух, заполняющий поровое пространство, свободное от воды. Так же, как и атмосфер­ный, почвенный воздух в основном состоит из азота, кислорода и углекислого газа, но в отличие от атмосферного содержание в нем кислорода и углекислого газа сильно изменяется во времени и в пространстве. Скорость обновления продуктов функциониро­вания газовой фазы в целом сопоставима со скоростью обновле­ния жидкой фазы.

Живая фаза почвы (почвенная биота) — это населяющие почву организмы. К ним относятся микроорганизмы, бактерии, грибы, водоросли, представители почвенной микрофауны; про­стейшие, насекомые, дождевые черви и др. Отнесение обитающих в почве корней растений к живой фазе почв, так же как и млеко­питающих, остается дискуссионным, хотя их вклад в почвообра­зование очень существенный.

Согласно современным представлениям почва является сложной системой, имеющей многоуровневую структурную орга­низацию. На базе системного подхода были определены иерархи­ческие уровни структурной организации почвы (Б.Г. Розанов, 1988). Наиболее низким уровнем является атомарный (радиоак­тивные изотопы, естественная и искусственная радиоактивность). Следующий уровень — кристалло-молекулярный, или молекулярно-ионный (молекулы и ионы твердой, жидкой, газообразной и живой фазы почв). Третий уровень структурной организации по­чвы — уровень элементарных почвенных частиц — это фракции разного размера, выделяемые при гранулометрическом анализе (песок крупный, средний, мелкий; пыль крупная, средняя, мел­кая; ил). Эти частицы различаются не только размером, но и со­ставом и свойствами. Четвертый уровень — почвенные микро- и макроагрегаты, или структурные отдельности, включающие кро­ме агрегированных (склеенных) элементарных почвенных частиц специфические новообразования (конкреции, стяжения, пленки и др.). Клеящим веществом в агрегатах являются новообразован­ные гумусовые вещества, соединения кальция, железа и др.

Пятый уровень организации — почвенный горизонт. Морфологические признаки, состав, строение и свойства генетических горизонтов позволяют диагностировать почвенные процессы и почвенные разности.

Шестой уровень структурной организации — это почвенный профиль (почвенный индивидуум), характеризующий почву как особое природное тело, состоящий из закономерного сочетания генетических горизонтов.

Седьмой и последующие уровни являются уровнями почвен­ного покрова: элементарный почвенный ареал — участок террито­рии, занятый одной почвой, почвенные комбинации, структуры, включающие два или несколько элементарных почвенных ареалов (сочетания, вариации, комплексы и др.). К последнему уровню сле­дует отнести почвенный покров, или педосферу в целом, как от­дельную геосферу Земли, имеющую общепланетарные функции.

Каждый из перечисленных уровней организации требует спе­циальных методов исследования и способов контроля и управления.

Почвы образуются в результате взаимодействия факторов почвообразования. В.В. Докучаевым было установлено пять гло­бальных факторов почвообразования: климат, растительность и животный мир (биологический фактор), почвообразующие породы, рельеф и возраст страны (время). Впоследствии были добав­лены хозяйственная деятельность человека (фактор, ставший в настоящее время глобальным) и ряд локальных факторов, таких как почвенно-грунтовые и грунтовые воды, поверхностные воды половодий и паводков в поймах рек, вулканический фактор в об­ластях действующих вулканов.

Почвоведение изучает почву не только как особое природ­ное тело, но и как средство производства, как предмет труда и как продукт труда. Это связано с тем, что главным функциональ­ным свойством почвы является плодородие, обеспечивающее жизнь на Земле и являющееся результатом жизни. Под плодородием понимается способность почв обеспечивать растения земными факторами жизни, а это: элементы питания, вода, почвенный воздух, стимулирующая способность, теплорегулирующая способность, кислотно-щелочные и окислительно-восстановитель­ные условия, энергетические поля, каркас для корневых систем. Кроме того следует различать космические факторы жизни растений (солнечная энергия, свет и тепло) и атмосферные факторы (кислород, углекислый газ, элементы питания).

Читайте также:  Применение травяного настоя для подкормки растений

Плодородие почв — предмет изучения одного из главных на­правлений прикладного почвоведения — агропочвоведения. Оно зависит от состава и свойств почв, формируется и развивается вместе с развитием почвы в результате взаимодействия факторов почвообразования, поддается количественной оценке и регулированию.

Источник

Фазы почвы

Твердая фаза почвы включает минеральную и органическую части. Первая составляет 80–95%, в торфяных почвах – 15–20 %. Источником минеральных веществ являются разнообразные горные породы; первичные и вторичные минералы; источником органических – остатки отмерших растительных и животных организмов, продукты их жизнедеятельности. Эта фаза почвы обеспечивает питание растений, определяет ее водные свойства – влагоемкость, водопроницаемость, поглотительную способность и другое.

Жидкая фаза (почвенный раствор) является активным компонентом почвы. С ее помощью осуществляется перемещение веществ внутри почвы, она обеспечивает растения водой и растворимыми элементами питания. Свойства воды изучены не все даже сейчас. Вода относится к наилучшему природному растворителю и имеет нейтральную реакцию. Но включения (примеси) солей, кислот и щелочей изменяют реакцию почвенного раствора в кислую или щелочную сторону. В почве вода бывает в трех состояниях: парообразном (Н2О), жидком (Н2О)2, твердом (Н2О)3. Жидкая вода диссоциирует: 2Н2О → Н2О++ОН-. Отличают следующие формы воды в почве: а) конституционная, когда гидроокисел – ион (ОН-) входит в состав кристаллической решетки и может быть вытеснена только при нагревании минерала до 800°С; б) кристаллизационная – химически связанная, как в соединении СаСО3 Н2О и вытесняется при t 200°С; в) пленочная – вода, удерживаемая слабыми сорбционными силами, связь рыхлая с минералом, движется под влиянием сорбционных сил; все указанные выше формы воды (а,б,в) – недоступны для корневой системы растений; г) капиллярная – свободная и доступная растениям, движется по порам диаметром до 8 мм; д) гравитационная – свободная и доступная растениям, движется под влиянием капиллярных и гравитационных сил.

Газовая фаза (почвенный воздух) заполняет поры, не занятые водой. Количество и состав почвенного воздуха непостоянны и определяются множеством химических и биохимических процессов, протекающих в почве. Газовая фаза поставляет необходимый почвенной биоте кислород. Без воздуха в порах почвы корневая система не развивается, и растения отмирают. Чем ближе химический состав воздуха почвы к атмосферному, тем лучше условия для развития растений. Воздухопроницаемость почвы зависит не только от объема пор, но и от силы ветра, который выдувает из почвы воздух с повышенным содержанием СО2 и задувает атмосферный воздух с повышенным количеством О2. В почвенном воздухе удерживается больше СО2 (0,2–10%) и меньше О2 (19–20%). При количестве О2 в воздухе почвы около 2,5–5,0 % развивается анаэробный процесс, а при содержании 1% О2 рост корней замедляется. Для улучшения воздушного режима почвы ее необходимо чаще рыхлить.

Живая фаза состоит из почвенных микроорганизмов (бактерии, водоросли, грибы и др.), беспозвоночных (простейшие, черви, моллюски), роющих позвоночных, корневых систем растений. Активная роль живых организмов определяет принадлежность ее к биокостным природным телам.

Источник

Вопрос 14.Фазовый состав почв.

Почва – это многофазное природное тело, которое представлено следующими физическими фазами: твердая, жидкая, газовая и живое вещество почвенных организмов.

Твердая фаза почвы – это ее основа, образующая твердый каркас почвенного тела. Она состоит из остаточных минералов или обломков горной породы и органических веществ — растительных остатков. На поверхности твердых почвенных частиц сосредоточены основные запасы питательных веществ, прежде всего — гумус, микроорганизмы. Свойства почвы, ее богатство и плодородие в значительной мере зависят от состава почвы и величины частиц. Твердые частицы в естественном залегании заполняют не весь объем почвенной массы, а лишь некоторую ее часть. Другую часть составляют поры – промежутки различного размера и формы между частицами и их агрегатами. Суммарный объем пор называется пористостью почв. От пористости зависят водные свойства почвы (водопроницаемость, влагоемкость) и ее плотность. Твердая фаза почвы характеризуется гранулометрическим, минералогическим и химическим составом, а также сложением, структурой, порозностью. При механическом анализе почвы в ней различают следующие по крупности частицы. Частицы мельче 0,01 мм называют физической глиной, частицы от 0,01 до 1 мм — физическим песком, и частицы мельче 0,0001 мм — коллоидальными частицами.

Читайте также:  Почва для яблоневого сада

Жидкая фаза почвы – это вода в почве, почвенный раствор, заполняющий поровое пространство почвы. Почвенные поры могут составлять от 25 до 70 % общего объема почвы. Во всякой почве содержится вода. Различно только ее содержание. Вода в почву попадает с дождем, снегом, градом, и росой. Иногда она проникает в ее поверхностные слои снизу, поднимаясь вверх по капиллярам. Вода, с растворенными в ней органическими веществами, солями, воздухом и содержащимися микроорганизмами называется почвенным раствором.

В различных почвах, различно и содержание почвенного раствора. Один богат солями (солончаковые почвы), другой органическими веществами (торфяники), третий бедный и тем и другим (пески). Передвигаясь в почве, раствор омывает почвенные частички, таким образом, он забирает из твердых частиц различные вещества, но в то же время и теряет часть. Таким образом, происходит постоянная смена состава почвенного раствора и самой почвы.

Содержание и свойства почвенного раствора зависят от водно-физических свойств почвы и от ее состояния в данный момент. В районах с низкими зимними температурами в холодный сезон жидкая фаза почвы переходит в твердое состояние, при повышении температуры часть почвенной воды может испариться, перейдя в газовую фазу. Жидкая фаза – это «кровь» почвенного тела, служащая основным фактором дифференциации почвенного профиля — главным образом путем передвижения воды в вертикальном и горизонтальном направлении происходит перемещение почвенных растворов, микроорганизмов. Почвенные растворы служат непосредственным источником питания растений. Человек всегда стремился своими разнообразными воздействиями в процессе сельскохозяйственного производства сделать его состав оптимальным для получения наиболее высокой продуктивности агроценозов. Орошение и осушение почв наряду с созданием благоприятного водного режима позволяет разбавить сильно концентрированные растворы, понизить концентрацию соединений железа и других элементов, токсичных для растений.

Для питания растений большое значение имеет осмотическое давление почвенного раствора. Осмотическое давление – это движение молекул из области более высоких концентраций в область более низких концентраций. При повышении осмотического давления почвенного раствора нарушается нормальное развитие сельскохозяйственных культур. У пшеницы, например, наблюдается задержка кущения, но ускоряются колошение, цветение и созревание, уменьшается урожайность, но увеличивается содержание белка в зерне.

Газовая фаза почвы или почвенный воздух – это смесь газообразных веществ, заполняющая в почве поры, свободные от воды, состав которой существенно отличается от атмосферного и очень динамичен во времени. Количество воздуха зависит от минерального состава почв. Процесс обмена почвенного воздуха с атмосферным называется газообменом или аэрацией. Растворенный почвенный воздух – это газы, растворенные в почвенной воде. Растворимость газов в почвенной воде возрастает с повышением их концентрации в свободном почвенном воздухе, а также с понижением температуры почвы.

В сухой почве воздуха больше, во влажной – меньше, поскольку вода и воздух в почве являются антагонистами, взаимно замещая друг друга в общем объеме почвенной порозности. Изменение состава почвенного воздуха происходит, главным образом, вследствие процессов жизнедеятельности микроорганизмов, дыхания корней растений и почвенной фауны. Почвенные грибы образуют разнообразные летучие соединения органической природы и определяют специфический запах земли. К макро газам почвенного воздуха относится азот, кислород, диоксид углерода.

Читайте также:  Подкормка для винных дрожжей своими руками

В незначительных количествах в почвенном воздухе присутствуют такие компоненты, как NO2, NO3, CO3, различные углеводороды – этилен, ацетилен, метан, а также сероводород, аммиак, эфиры и другие вещества. Болота часто выделяют самовозгорающиеся и психотропные газы. Обязательно отмечается присутствие инертных газов, в том числе и радиоактивных. Источником последних является распад радионуклидов минеральной части почвы. Естественная радиоактивность почвенного воздуха намного выше атмосферного.

Между атмосферой и почвой происходит постоянный газообмен, в процессе диффузии которого в почву проникает кислород и удаляется из нее углекислый газ и некоторые другие газы. Лучше аэрируются верхние слои почв, а также рыхлые, крупнопористые, с хорошей структурой и не переувлажненные почвы. При плохой аэрации, особенно в избыточно увлажненных почвах, содержание кислорода может понизиться до нескольких процентов или даже до десятых долей процента. Недостаток кислорода в почвенном воздухе нарушает нормальную жизнедеятельность корневых систем и растений в целом, а при очень малом содержании или отсутствии его (например, в случае затопления корнеобитаемого слоя почв) может привести к гибели активных корней и растений. Кроме того, недостаток кислорода в почве тормозит процессы разложения органического вещества. При этом в почве могут накапливаться токсичные продукты анаэробного разложения органических веществ, вредные для растений закисные соединения, а также токсичные продукты жизнедеятельности самих корней растений.

Достаточное содержание кислорода в почве обеспечивает необходимый уровень микробиологической деятельности, дыхание корней растений и почвенных животных, которые являются основными потребителями кислорода. И лишь небольшая его часть расходуется на чисто химические процессы окисления с выделением углекислого газа и воды. Основная масса кислорода в почве расходуется в процессе аэробного дыхания. Дефицит кислорода угнетает развитие корневых волосков, вызывает массовую гибель всходов растений, провоцирует развитие болезнетворных организмов, вызывающих корневую гниль. Концентрация кислорода в почвенном воздухе различных почв в различные сезоны года колеблется от десятых долей процента до 21 %. Растворенный кислород поддерживает окислительные свойства почвенного раствора. Оптимальные условия для растений создаются при содержании кислорода в почвенном воздухе в пределах около 20 %.

Азот из почвы поступает через корни растений. Он необходим для роста растений, образования белков, нуклеиновых кислот, хлорофилла. При недостатке азота в почве растения желтеют, отстают в росте. Прямых определений содержания молекулярного азота в почвенном воздухе крайне недостаточно, но исследования динамики содержания молекулярного азота важны для изучения процессов азотфиксации, нитрификации.

Растворенные почвенные газы проявляют высокую активность. С насыщением почвенного раствора углекислым газом повышается растворимость карбонатов, гипса. Доказано, что диоксид углерода атмосферы на 90 % имеет почвенное происхождение. Биологическое значение этого газа многосторонне. С одной стороны, он обеспечивает ассимиляционный процесс растений (искусственное повышение концентрации CO2 в теплицах вызывает увеличение скорости фотосинтеза и дает 50-100 % пророст урожая). Высокое содержание углекислого газа оказывает отрицательное влияние на семена, корни, урожайность растений.

Важность роли почв как источника органического вещества, поступающего в реки и далее в моря, отмечал В.И. Вернадский, указывая на то огромное значение, которое имеет в жизни и химических реакциях океана почвенный покров суши, и подчеркивал, что почва и морская вода химически и генетически тесно связаны.

Живая фаза почвы – это населяющие её организмы, непосредственно участвующие в процессе почвообразования. К ним относятся такие микроорганизмы, бактерии, грибы, водоросли, представители почвенной микро — и мезо- фауны, а именно простейшие, насекомые, черви, и корневые системы.

Источник

Adblock
detector