Российские химики придумали способ очистить почву от ядов с помощью растений
Российские химики помогли клеверу эффективнее очищать почву от тяжёлых металлов.
Фото Pixabay.
Растение страдает от накапливаемых токсинов, но это можно компенсировать специальными добавками.
Фото Анна Макарова и др./РХТУ.
Химики из РХТУ имени Д. И. Менделеева и НИЦ «Курчатовский институт» разработали перспективный способ очистки почвы от тяжёлых металлов. Они создали специальные добавки, которые помогают растениям изымать эти токсичные элементы из почвы и при этом не погибать от них.
Известно, что некоторые растения накапливают в себе ядовитые тяжёлые металлы, присутствующие в почве. Это плохая новость, если мы собираемся съесть эти растения. И хорошая, если мы готовы использовать зелёных помощников, чтобы очистить почву. Ведь токсичную биомассу, аккумулировавшую в себе извлечённый из земли яд, можно сжечь, а золу утилизировать.
Такой метод очистки почвы называется фиторемедиацией. Он был изобретён ещё в прошлом веке, но до сих пор дорабатывается и улучшается специалистами. Учёные стремятся, во-первых, заставить растения более интенсивно извлекать из грунта ядовитые вещества. Во-вторых, необходимо компенсировать действие токсинов на сами очищающие растения. Ведь понятно, что если они не будут расти и накапливать биомассу, то никакой очистки не получится.
Этому и была посвящена работа российских химиков. Они изучали возможность очистки почвы от кадмия, никеля и меди с помощью клевера. Толчком к исследованию стал запрос от руководства одного из закрытых мусорных полигонов, в грунте которого накопились эти вредные вещества.
Клевер известен своей способностью накапливать тяжёлые металлы. Химики ещё усилили её с помощью специальной добавки – этилендиаминтетрауксусной кислоты (ЭДТА). Обычно она используется, чтобы помочь растениям извлекать из почвы полезные минеральные вещества, но оказалось, что это работает и с токсичными тяжёлыми металлами.
Однако у ЭДТА есть большой минус: она так плохо разлагается в почве, что в конце концов сама становится загрязнителем. Поэтому исследователи опробовали также другое соединение с не менее зубодробительным названием гидроксиэтилидендифосфоновая кислота (ОЭДФ). Это вещество легко разлагается в почве и полезно для растений.
Чтобы растение не слишком страдало от накопленных тяжёлых металлов, биологи использовали поддерживающие добавки: фитогормоны и соли железа.
Для проверки работоспособности смеси экспериментаторы ввели в универсальный грунт тяжёлые металлы в количествах, наблюдаемых на мусорном полигоне. В этой почве в течение 31 дня выращивали клевер: одни растения с добавкой ЭДТА, другие – ОЭДФ, а третьи (контрольные) без добавок. Фитогормоны вводили с поливом, а солями железа опрыскивали листья.
Оказалось, что ЭДТА лучше стимулирует накопление металлов. Их содержание выросло по сравнению с контрольными образцами почти в шесть раз. Но от такого количества яда биомасса растения значительно снизилась.
С другой стороны, добавка ОЭДФ увеличивала концентрацию тяжёлых металлов в растении только в 2,6 раза. Зато и биомасса уменьшалась не так сильно, а с помощью фитогормонов и солей железа этот эффект был почти нейтрализован.
Впрочем, у ОЭДФ оказалось неожиданное и неприятное свойство. Почти все тяжёлые металлы, поглощённые растением, накапливались не в его побегах, а в корнях. В некоторых экспериментах содержание кадмия в «корешках» было в сто раз выше, чем в «вершках».
Это подрывает идею очистки почвы по схеме «засеяли клевером, скосили его и сожгли», ведь накопившие яд корни останутся в грунте. Зато, возможно, с помощью ОЭДФ можно будет выращивать злаки и другие съедобные растения на неблагополучных почвах: токсичные металлы останутся в корнях, которые никто и не собирался есть.
Описанные выше эксперименты – важный шаг на пути к схемам очистки почвы, эффективным не только в лаборатории, но и в реальных условиях.
Научная статья с результатами исследования опубликована в журнале Sustainability.
К слову, ранее мы рассказывали о том, как российские учёные спасают растения от загрязнённой почвы с помощью селена. Писали мы и о другой отечественной разработке: искусственной почве, которая заставляет сосны расти в два раза быстрее.
Больше новостей из мира науки вы найдёте в разделе «Наука» на медиаплатформе «Смотрим».
Источник
Способ очистки почв от тяжелых металлов
Владельцы патента RU 2365078:
Изобретение относится к области сельского хозяйства. Способ очистки почв от тяжелых металлов включает выращивания растений фитомелиорантов на загрязненных почвах с последующим их удалением. В качестве растения — фитомелиоранта используют сафлор. Семена сафлора высевают в загрязненную почву из расчета 20-22 кг/га, доводят взрослые растения до фазы окончания цветения и начала отмирания нижних листьев, после чего фитомелиорант полностью удаляют из почвы. Обеспечивается полное поглощение ионов тяжелых металлов. 3 табл.
Изобретение относится к сельскому хозяйству и может быть использовано при проведении специальных мероприятиях по снижению содержания в загрязненных почвенных ценозах токсичных концентраций тяжелых металлов с целью восстановления или улучшения агрохимических показателей, необходимых для получения экологически безопасной продукции.
В настоящее время отечественными и зарубежными исследователями ведется поиск растений — гипераккумулянтов, свойства которых позволяют эффективно извлекать тяжелые металлы из загрязненной почвы [1, 3, 4].
В литературных источниках сообщается, что рекультивация грунтов или очистка их от загрязнений с помощью растений является сравнительно новым методом (десять лет), экологическим и прогрессивным. Он позволяет исключить или ограничить перенос тяжелых металлов по цепочке от человека к грунтам и грунтовым водам без ущерба для окружающей среды [5].
В аналоговых работах авторами показано, что в целях фиторемедиации загрязненных почв (очистка при помощи растений) используют следующие растения — аккумулянты: ракитник, редька масличная, амарант и даже дикорастущие растения [1, 3, 4, 5].
Наиболее близким аналогом к изобретению по совокупности основных существенных признаков является способ очистки почв от тяжелых металлов путем выращивания растений — фитомелирантов на загрязненных почвах с последующим их полным удалением из почвы [2] (см. RU 2282508, Кл. A01B 79/02, 27.0.2006).
К недостаткам аналоговой работы следует отнести изучение только одного загрязнителя — цезия, не указан коэффициент биологического накопления загрязнителя по используемым культурам, нет четкого понятия о сроке уборки, поскольку использовались культуры разных групп технологических требований и биологии развития.
Задачей изобретения является улучшение экологического состояния естественных и культурных биогеоценозов за счет снижения содержания токсичных концентраций тяжелых металлов в корнеобитаемом слое почв.
Технический результат — более полное поглощение ионов тяжелых металлов (свинец, кадмий и медь) из почвенного раствора при создании оптимального покрытия растениями сафлора загрязненной площади.
По сущности поставленная задача достигается тем, что на загрязненных почвах возделывают сафлор, семена высевают из расчета 60-80 растений на м 2 (20-22 кг/га) с последующим доведением и полным удалением растений до фазы окончания цветения и начала отмирания нижних листьев.
Предлагаемая норма высева обеспечивает полный охват корневой системой растения по объему загрязненной почвы. При меньшей норме высева охват не полный, а при большей норме снижается резко продуктивность надземной массы и, как следствие, общий вынос тяжелых металлов растениями сафлора.
Пример конкретного выполнения
Опыты проводились на территории очистных сооружений г.Истры.
Проводили весенний посев растений вручную с последующей заделкой граблями.
Пробы почв отбирали до посева и сразу после уборки сафлора.
Уборку проводили, доведя развитие растений до фазы окончания цветения и начала отмирания нижних листьев.
Полученные результаты в ходе выполнения эксперимента в полевых условиях убедительно доказывают, что сафлор может быть отнесен к растениям — гипераккумулянтам тяжелых металлов.
Интересно отметить, что, как правило, при выращивании на загрязненных почвах, даже у гипераккумулянтов, содержание таких металлов, как свинец, кадмий и медь в растительных образцах по надземной части не превышает 1,2; 0,5-1 и 10-12 мг/кг сухой массы соответственно (табл.1).
Таблица 1 | |||
Содержание тяжелых металлов в растительных образцах растений сафлора (мг/кг сух. массы) | |||
РЕЗУЛЬТАТЫ ИСПЫТАНИЙ | |||
Наименование образца (сафлор) | свинец | кадмий | медь |
надземная масса | 3,58 | 6,586 | 34,88 |
корни | 1,36 | 1,087 | 57,83 |
На основании представленных результатов и данных по содержанию тяжелых металлов (подвижная форма) в почве произведен расчет коэффициента биологического накопления (поглощения) (табл.2).
Как известно, если у растений даже по надземной массе коэффициент биологического накопления токсикантов больше единицы, то данный вид может быть отнесен к гипераккумулянтам, в рассматриваемом примере высокий КБНTA достигнут и по корневой части опытных растений.
Таблица 2 | |||
Коэффициент биологического накопления (КБНТМ) тяжелых металлов растениями сафлора | |||
Наименование образца (сафлор) | свинец | кадмий | медь |
КБН надземная масса | 2,13 | 8,25 | 1,22 |
КБН корни | 0,81 | 1,36 | 2,03 |
содержание подвижной фракции в почве, мг/кг | 1,68 | 0,8 | 28,4 |
Анализ биопродуктивности растений в фазу цветения не выявил проявления токсичного влияния загрязненной почвы на рост и развитие сафлора — средняя сухая масса стеблей составила 557 г, корней — 143 г см 2 соответственно. Посев семян проводится вручную из расчета 60-80 растений на 1 кв. м.
При загущенном посеве, свыше 80 раст./м 2 , отмечали снижение продуктивности надземной массы в среднем на 16%, растения отставали в росте, корневая система сафлора имела меньшую массу, видимо при уплотнении посевов у растений сафлора проявляется аллелопатия — взаимное угнетение роста и развития.
Таблица 3 | |||
Содержание тяжелых металлов в почве до и после применения сафлора, мг/кг (полигон Истринских очистных сооружений, 2007-08 г.) | |||
Наименование образца | свинец | кадмии | медь |
Почва без растений | 11,48 | 221 | 160,5 |
сафлор | 10,44 | 1,73 | 154,9 |
ОДКТМ (ориентировочно допустимая концентрация) в почве, мг/кг | 130 | 2,0 | 132 |
Результаты испытании сафлора при использовании в качестве фитомелиоранта убедительно доказывают высокую эффективность аккумулирующей способности растений для снижения содержания тяжелых металлов в корнеобитаемом слое почвы.
Способ очистки включает следующие мероприятия:
— подготовка почвы к посеву;
— посев фитомелиоранта из расчета 60-80 раст./м 2 (20-22 кг/га), глубина заделки семян 4-5 см;
— доводят развитие растений сафлора до фазы окончания цветения и начала отмирания нижних листьев, затем полностью удаляют их из загрязненной почвы.
Предлагаемый способ позволяет существенно повысить эффективность фитосанации, и при установлении авторского права дает основание для разработки ТУ различных схем фитореабилитации загрязненных территорий.
1. Баран С., Кжывы Е. Фиторемедиация почв, загрязненных свинцом и кадмием, при помощи ракитника / Влияние природных и антропогенных факторов на социоэкосистемы, 2003. №2. — С.39-44.
3. Жадько С.В., Дайнеко Н.М. Накопление тяжелых металлов древесными породами улиц г.Гомеля. // Изв. Гомел. гос.ун-та, 2003. №5. — С.77-80.
4. Кудряшова В.И. Аккумуляция ТМ дикорастущими растениями. — Саранск — 2003 г. — С.10, 18, 50, 78.
5. Rakotosson Voahirana. Les metaux lourds et la phytorenediation: l’etat de l’art. // Eau, ind., nuisances. 2003. №260. — C.45-48.
Способ очистки почв от тяжелых металлов путем выращивания растений — фитомелиорантов на загрязненных почвах с последующим их удалением, причем в качестве растения — фитомелиоранта используют сафлор, семена сафлора высевают в загрязненную почву из расчета 20-22 кг/га, доводят взрослые растения до фазы окончания цветения и начала отмирания нижних листьев, после чего фитомелиорант полностью удаляют из почвы.
Источник
научная статья по теме ОЧИСТКА ПОЧВ ОТ ТЯЖЁЛЫХ МЕТАЛЛОВ С ПОМОЩЬЮ РАСТЕНИЙ Общие и комплексные проблемы естественных и точных наук
Цена:
Авторы работы:
Научный журнал:
Год выхода:
Текст научной статьи на тему «ОЧИСТКА ПОЧВ ОТ ТЯЖЁЛЫХ МЕТАЛЛОВ С ПОМОЩЬЮ РАСТЕНИЙ»
ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК, 2008, том 78, № 3, с. 247-249
ИЗ РАБОЧЕЙ ТЕТРАДИ ИССЛЕДОВАТЕЛЯ
Статья посвящена описанию простого в исполнении и щадящего почву способа её очистки от тяжёлых металлов — фитоэкстракции, заключающейся в посеве и выращивании в течение определённого периода времени специально подобранных видов сельскохозяйственных растений на загрязнённых участках для извлечения из почвы металлов корневой системой и накопления их в надземной биомассе.
ОЧИСТКА ПОЧВ ОТ ТЯЖЁЛЫХ МЕТАЛЛОВ С ПОМОЩЬЮ РАСТЕНИЙ
Р. В. Галиулин, Р. А. Галиулина
Тяжёлые металлы представляют собой большую группу химических элементов с атомной массой более 50 у.е. В почву они попадают различными путями: в составе газопылевых выбросов, атмосферных осадков, поливных вод, загрязнённых промышленными стоками и т.д. Человек может получить «свою долю» тяжёлых металлов не только напрямую с вдыхаемым воздухом и почвенной пылью, но и через продукты питания, производимые на загрязнённых сельскохозяйственных угодьях. Пагубное влияние тяжёлых металлов на человека состоит в том, что ряд их соединений характеризуется высокой токсичностью и канцерогенностью. Особенно опасны выбросы металлургических производств, вызывающие повышение заболеваемости и смертности от злокачественных новообразований, среди которых первое место занимает рак лёгких [1]. В этой связи проблема очистки почв от тяжёлых металлов становится актуальной для территорий так называемых экологически неблагополучных регионов, к числу которых можно отнести Челя-
Авторы работают в Институте фундаментальных проблем биологии РАН. ГАЛИУЛИН Рауф Валиевич -доктор географических наук, ведущий научный сотрудник лаборатории функциональной экологии. ГА-ЛИУЛИНА Роза Адхамовна — научный сотрудник той же лаборатории.
бинскую область. Этот регион занимает одно из ведущих мест в стране по концентрации промышленного производства. Загрязнение воздушного бассейна и территорий вокруг предприятий чёрной металлургии достигает десятков километров 3. По данным космических съёмок, техногенное загрязнение земель области тяжёлыми металлами охватывает 29.5 тыс. км2 при её общей площади 87.9 тыс. км2.
Между тем известны различные способы очистки почв от тяжёлых металлов, среди которых особый интерес вызывает фитоэкстракция 5. Она заключается в посеве и выращивании в течение определённого периода времени на загрязнённых участках специально подобранных видов сельскохозяйственных растений для извлечения из почвы тяжёлых металлов корневой системой и накопления их в надземной биомассе, в последующем утилизируемой. При этом коэффициент накопления металлов в растениях повышают благодаря внесению в почву эффекторов фитоэкстракции. Данная технология считается простой в исполнении, щадящей почву и экономически целесообразной по сравнению с механическими и физико-химическими подходами. Так, механические способы связаны со срезанием наиболее загрязнённого поверхностного слоя и его размещением на свалках (секвестрирование), или перемешиванием с менее загрязнёнными глубже лежащими слоями почвы посредством плантажной вспашки (разбавление), или покрытием его «привозной» чистой почвой (землевание). Физико-химические методы очистки основаны на промывке почвы специальными реагентами для извлечения из неё тяжёлых металлов (хемоэкстракция) или её очистки посредством воздействия на загрязнённый слой постоянного электрического тока через электроды (электрокинетическая ремедиация).
Как показывают наблюдения, для фитоэкстракции лучше использовать специально подобранные виды сельскохозяйственных растений, чем растения-гипераккумуляторы из числа диких
видов, таких как ярутка синеватая (Thlaspi caer-ulescens), бурачок стенный (Alyssum murale), резуха Галлера (Cardaminopsis halleri) и др. Они хотя и накапливают в десятки раз больше металлов, чем другие растения, но отличаются низкой скоростью роста и небольшой надземной биомассой. Между тем фитоэкстракция, как и любой другой подход к очистке почвы, имеет ряд своих особенностей.
• Содержание тяжёлых металлов в почве загрязнённого участка должно быть приемлемым для растений, то есть не вызывать у всходов выраженных фитотоксических симптомов (обесцвечивание, пигментация и пожелтение листьев, задержка роста и др.), что будет характеризовать их толерантность к тяжёлым металлам и одновременно способность поглощать последние корневой системой и перемещать в надземную биомассу за счёт потока, создаваемого испарением воды листовой поверхностью растений.
• Растения, используемые для очистки почвы, должны отличаться высокой скоростью роста и производить большую надземную биомассу, иметь глубоко разрастающуюся корневую систему, высокую сопротивляемость к болезням и вредителям, быть отзывчивыми к обычной агротехнике, удобными для уборки и непривлекательными для домашних и диких животных, чтобы не вызывать случаи отравления насыщенной тяжёлыми металлами надземной биомассой.
• Для повышения накопления в растениях тяжёлых металлов необходимо применять так называемые эффекторы фитоэкстракции в виде комплек-сонов из числа полиаминополиуксусных кислот, таких как этилендиаминтетрауксусная (ЭДТА), дигидроксиэтилэтилендиаминдиуксусная (Д ДД А), диэтилентриаминпентауксусная (ДТПА), этилен-бис(оксиэтил ентриамин)тетрауксусная (ЭТТА), этилендиаминдигидроксифенилуксусная (Э ДФ А), циклогексан-транс -1,2-диаминтетрауксусная (ЦДТА) и др. Эти вещества способны образовывать прочные водорастворимые внутрикомплекс-ные соединения со многими металлами, повышать растворимость, подвижность металлов в почве, а следовательно, их поглощение корневой системой и накопление в надземной биомассе. Обычно эффекторы фитоэкстракции в виде водных растворов их солей вносят под растения в фазу достижения ими максимальной надземной биомассы. Данный приём позволяет производить кратный посев и возделывание растений в течение одного вегетационного сезона, а значит, сократить время очистки почв от тяжёлых металлов. Необходимо также отметить, что при внесении эффекторов фитоэкстракции в почву надо избегать дождливых дней для уменьшения риска загрязнения грунтовых вод тяжёлыми металлами вследствие
возрастания их содержания в почвенном растворе и миграции по почвенному профилю.
• Очистку почвы от тяжёлых металлов необходимо проводить вплоть до достижения соответствующих санитарно-гигиенических нормативов, то есть предельно допустимых концентраций (ПДК) или ориентировочно допустимых концентраций (ОДК). При этом экономически целесообразным для фитоэкстракции считается период продолжительностью 5-10 лет. Завершающим этапом фитоэкстракции является жатва, сбор и утилизация загрязнённой тяжёлыми металлами надземной биомассы растений, так как уборка всей корневой биомассы, первоначально насыщаемой тяжёлыми металлами, практически невозможна. Надземная биомасса растений в дальнейшем может быть использована для извлечения из неё цветных металлов путем её предварительного высушивания, озоления и последующей специальной обработки.
О перспективности приведённого выше способа очистки почв от тяжёлых металлов свидетельствуют результаты вегетационного опыта с горчицей сизой, или сарептской (Brassica juncea), и выщелоченным чернозёмом из сельскохозяйственного угодья в окрестностях Челябинска. Данный вид горчицы широко используется в практике очистки почв от тяжёлых металлов. В опыте моделировалась ситуация, связанная с накоплением меди и никеля в течение нескольких лет в почве участка, находящегося в зоне влияния предприятий металлургии и энергетики Челябинска. Выбор этих металлов для опыта не случаен, так как медь и никель наряду с хромом, цинком, свинцом и кадмием относятся к основным загрязнителям почв в мире. Почву обрабатывали водными растворами солей меди и никеля в количествах по 100 мг/кг, затем производили посев семян горчицы и наблюдали за ростом и развитием растений в течение нескольких недель. По достижении горчицей максимальной надземной биомассы под растения вносили наиболее часто применяемый на практике эффектор фитоэкстракции ЭДТА в виде водного раствора её натриевой соли в дозах от 1 до 10 ммоль/кг. Спустя неделю надземную биомассу горчицы срезали, высушивали, анализировали содержание меди и никеля в ней. Как оказалось, с увеличением дозы ЭДТА коэффициенты накопления тяжёлых металлов, то есть отношения содержания металлов в растении и почве (потенциал очистки почвы) возрастали относительно контроля (без внесения ЭДТА) для меди в 2.8-43.6 раза, для никеля — 1.8-25.3 раза (табл. 1).
Расчёты, проведённые с использованием экспоненциальной зависимости, показали, что кратность посева и выращивания горчицы с применением эффектора фитоэкстракции значительно сокращает время очистки почвы от тяжёлых ме-
ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК том 78 по теме «Общие и комплексные проблемы естественных и точных наук»
ГАЛИУЛИН Р.В., ГАЛИУЛИНА Р.А. — 2010 г.
КОПЦИК Г.Н. — 2014 г.
ГАЛИУЛИН Р.В., ГАЛИУЛИНА Р.А. — 2012 г.
БАЛАБИНА И.П., НЕВЕДРОВ Н.П., ПРОЦЕНКО Е.П., ПРУСАЧЕНКО А.В. — 2013 г.
Источник