Серьезная экологическая проблема — разрушение почвы: причины, способы мелиорации
Почва – это важный компонент нашей среды обитания. Её главная функция на экологической арене заключается в почвенном плодородии. Нарушенный биологический круговорот приводит к деградации почвы и возникает необходимость в её мелиорации.
Причины деградации почвенного слоя
Деградация почвы может возникать естественным способом или становится причиной воздействия антропогенной деятельности. Итог чрезмерной деградации – это серьёзные экологические проблемы глобального масштаба.
Деградация земель может возникать по следующим причинам:
- Физические факторы – способны менять естественный состав и структуру почвы. К ним относят дожди, поверхностные стоки, наводнения, ветровую эрозию и обработку земли. Плодородный верхний слой ухудшается, что приводит к снижению качества почвы.
- Биологические факторы – деятельность людей и растения. Микробная активность почвы может снижаться из-за некоторых видов бактерий и грибков. Это приводит к низким показателям урожайности и пригодности почвы. Воздействие человеческого фактора оказывает влияние на истощение питательных веществ в земле.
- Химические факторы – большой уровень щёлочности, кислотности или заболачивания воды. По этой причине химические свойства земли изменяются, происходит снижение уровня питательных веществ. В этом случае фактор может привести к необратимым изменениям.
Перечисленные факторы увеличивают возможность эрозии почвы, появляется её отслоение, что приводит к изменению состава и структуры. Сельскохозяйственная деятельность, по причине неправильного использования химических веществ, убивает организмы, отвечающие за связывание почвы.
Причины деградации земель по вине человека:
- Вырубка лесов и удаление растительного покрова – увеличивается влияние минералов на землю.
- Промышленная и горнодобывающая деятельность – загрязняет и уничтожает растительный покров, отдаёт почве химические химикаты в виде ртути. Итог – земля непригодна для дальнейшего использования, в каких бы то ни было целях.
- Неверная практика выращивания – слой почвы становится похож на отдельные небольшие «островки», тем самым увеличивается скорость эрозии.
- Урбанизация – уничтожает растительный покров, влияет на уплотнение почвы в период строительства. По причине смены дренажной схемы, почва покрывается толстым слоем бетона, который усиливает поверхностный сток – возникает эрозия верхнего слоя почвы.
- Перевыпас – верхний растительный покров полностью исчезает вместе с частицами почвы: темпы эрозии увеличиваются.
Современные химические удобрения нарушают естественный уровень минералов в почве, вызывают снижение питательных веществ. Неправильное применение удобрений влияет на скорость деградации земельного участка, биологическая активность понижается, а токсические содержания накапливаются.
По этим причинам запускаются процессы деградации земель, которые приводят к экологическим проблемам. Биоразнообразие снижается, тем самым запускается очередной виток разрушительных процессов.
Типы разрушения
По причинам воздействия развиваются несколько типов деградации почв. К ним относятся:
- водная и ветровая эрозия почвы, при которой происходит отрыв и перенос обломков, сопровождающиеся их дальнейшим отложением;
- засоление из-за техногенных рассолов в почве и нарушения режима орошения;
- осолонцевание при техногенном засолении соединениями, в состав которых входит натрий;
- вторичное заболачивание – возникает из-за нарушений стоков грунтовых и поверхностных вод, с которыми не справляются осушительные системы;
- загрязнение почв – химические вещества в почве превышают естественные показатели;
- опустынивание – орошаемые земли становятся безводными, напоминающие безжизненную пустыню.
Последствия
Сельскохозяйственная деятельность наносит колоссальный вред почве, которая проявляется в катастрофических последствиях локального и глобального масштаба. Говоря о втором, стоит указать, что за последние несколько тысяч лет общая площадь, пригодная для сельскохозяйственного применения, сократилась в два раза. Многие пустыни и полупустыни возникли по причине антропогенного характера.
К последствиям деградации, связанной с физическим явлением, относят:
- снижается уровень почвенного плодородия;
- разорение почвенной биоты;
- дегумификация;
- слитизация;
- критический уровень перераспределение поверхностных вод;
- локальное вымокание;
- засуха.
Методы мелиорации для сохранения плодородия
На формирование плодородного слоя земли в 1 см потребуется около ста лет. По этой причине, главная задача заключается в том, чтобы сохранить плодородие на текущем уровне и планировать его дальнейшее ежегодное повышение. Этот процесс должен нести постоянный характер, и в то же время не мешать ведению сельского хозяйства в настоящий момент. Для этого следует применять следующие методы:
- Снизить количество химии. Необходимо сократить применение ядохимикатов и синтетических удобрений. Пестициды оказывают губительное влияние не только на вредителей, но и на микрофлору поля. Минеральные удобрения можно заменить навозом, торфом или компостом. Ядохимикаты применяются лишь для конкретной проблемы и не должны использовать в целях профилактики.
- Соблюдение правил севооборота. Он уменьшает истощение почвы и сдерживает размножение вредителей. При этом методе снижается необходимость в использовании агрохимии.
- Чёрный пар или «отдых» для земли. В период нарушения плодородия почвы или раз в пять лет, участок необходимо оставить незасеянным на один сезон.
- Сидераты. Если объём натуральных удобрений не велик, можно воспользоваться растениями-сидератами. После того как они вырастают, сидерат следует запахать в поле в виде удобрения.
- Мульчирование – помогает при ветровой и водяной эрозии, способствуя сохранению уровня влаги в почве. На территории промышленного поля мульчирование использовать сложно, но в частных огородах метод показывает положительные тенденции.
Рекультивация земель
Рекультивация земель – это мероприятия, способствующие улучшению и восстановлению продуктивности нарушенных земель из-за природопользования:
- загрязнение земли токсичными веществами и другим мусором;
- утратившие большую часть плодородного слоя земли;
- имеющие нарушения в целостности рельефа.
Рекультивация также может проводиться на землях, в которых нарушен естественный уровень циркуляции поверхностных и грунтовых вод. В этом случае рекультивация помогает отрегулировать и восстановить движение воды.
В некоторых случаях процесс рекультивации может проходить в несколько этапов:
- Комплекс технических мероприятий. В этот момент внимание уделяется восстановлению естественного рельефа местности, а также может проводиться его имитация. Террасированию подвергаются участки, находящиеся в местах горнодобывающих предприятий, так как им невозможно вернуть прежний вид.На выровненных участках мусор закапывается, в сложных случаях укладывается новый верхний слой. Склоны холмов дополнительно укрепляют, устанавливают дренажные и оросительные системы.
- Биологическая культивация. Второй шаг заключается в повышении плодородных показателей почвы. На этом этапе применяется биологическое очищение, происходит удобрение почвы, участок засаживается многолетними травами и деревьями.
Почва в процессе природных и техногенных воздействий меняется. Показатели плодородия снижаются, а участки земель становятся уязвимыми. Их рекультивация помогает восстанавливать биологический баланс полезных веществ, однако на это уходит много времени. Главный фактор сохранения почвы – своевременная забота об участке.
Источник
Утрата и восстановление структуры почвы
Причинами утраты структуры являются:
механическое разрушение, физико-химические явления и биологические процессы.
Механическое разрушение структуры происходит под влиянием обработки почвы, передвижения по ее поверхности машин и орудий, людей, животных, под ударами капель дождя.
Важнейшими путями уменьшения механического разрушения почвенной структуры является обработка почвы в состоянии ее спелости, а также минимализация обработки.
Физико-химические причины утраты структуры связаны с реакциями обмена двухвалентных катионов (кальция и магния) в ППК на одновалентные (натрий и аммоний).
При этом коллоиды (главным образом гумусовые вещества), прочно цементирующие механические элементы в агрегаты, пептизируются при увлажнении и структурные отдельности разрушаются. Поэтому приемы химической мелиорации почв (известкование, гипсование и др.), приводящие к обогащению ППК обменным кальцием, способствуют и улучшению структуры.
Биологические причины разрушения структуры связаны с процессами минерализации почвенного гумуса — главного клеящего вещества при образовании структуры.
Восстановление и сохранение структуры — непременное условие ведения земледелия. Существуют приемы, способствующие восстановлению почвенной структуры.
К химическим приемамотносят известкование кислых почв и гипсование солонцов. В результате известкования почва становится более структурной, в ней увеличивается водопроницаемость и уменьшается плотность.
Известкованные почвы отличаются более благоприятными физико-механическими свойствами.
Гипсование устраняет щелочную реакцию солонцовых почв, улучшает их физические свойства и структурное состояние. Однако применением известкования и гипсования нельзя полностью решить проблему улучшения физико-механических свойств и структуры почвы.
Биологические приемы направлены на повышение содержания органического вещества (гумуса) в почве. Эти приемы универсальны и долговечны. С увеличением содержания гумуса в почве улучшаются не только физико-механические и химические свойства, но и все почвенные режимы: пищевой, водный, воздушный.
Искусственное оструктуривание почв осуществляется введением в них небольшого количества структурообразующих веществ, по преимуществу органических соединений (П. В. Вершинин).
Сложение почвы — физическое состояние почвенного материала (в профиле почвы в целом или в ее отдельном горизонте), обусловленное взаимным расположением и соотношением в пространстве твердых частиц и связанных с ними пор (геометрия пространства, занятого почвенным материалом).
По степени плотности различают:
слитное (очень плотное), плотное, рыхлое и рассыпчатое сложение почвы.
При слитном сложении почва не поддается копке лопатой;
при плотном сложении лопата входит в почву с большим трудом;
при рыхлом сложении она входит легко,
а при рассыпчатом — без всяких усилий.
По характеру пористости различают следующие типы сложения почвы:
тонкопористое — диаметр пор меньше 1 мм;
пористое — поперечник нор колеблется в пределах 1—3 мм;
губчатое — много пор диаметром 3—-5 мм;
ноздреватое — почва имеет полости от 5 до 10 мм;
ячеистое — характеризуется полостями крупнее 10 мм;
трубчатое — полости соединяются в канальцы.
Кроме различного рода пор и полостей, которые обычно пронизывают структурные отдельности, пористость почв характеризуется системой трещин, образующихся в сухое время года.
По этому признаку различают
тонкотрещиноватое сложение — ширина трещин но превышает 3 мм;
трещиноватое — трещины достигают 10 мм ширины;
Источник
Структура и физико-механические свойства почвы
Почва является полидисперсным и пористым телом. Ее твердая часть состоит из частиц различного размера — механических элементов. Они могут находиться в раздельно-частичном (бесструктурном) состоянии или в виде структурных отдельностей (агрегатов).
При любом уплотнении механических элементов и агрегатов между ними всегда имеются поры. С наличием пор и их размером тесно связаны проникновение корней, воды и воздуха, воздухообмен, запас, расход и передвижение влаги, нагревание и охлаждение почвы, интенсивность и направленность микробиологических процессов, т. е. важнейшие показатели плодородия почвы — ее способности обеспечивать растения водой, воздухом, элементами питания и в определенной степени теплом.
Особенности почвы как полидисперсного и пористого тела определяют ее специфические физические свойства. К ним относят структуру, общие физические, физико-механические, водные, воздушные, тепловые свойства почвы. В настоящей главе рассматриваются структура, общие физические и физико-механические свойства.
Физические свойства почвы — важный, а иногда решающий фактор формирования урожая сельскохозяйственных культур и эффективности различных приемов их возделывания.
Агрономическая характеристика структуры
Физические свойства почвы и их влияние на плодородие в большой степени зависят от ее агрегатного состояния. В главе 4 рассмотрена структура почвы как ее морфологический признак.
При изучении физических свойств необходимо знать характеристику структуры с точки зрения агрономии. Агрономически ценной структурой является комковатая и зернистая структура верхних горизонтов почвы размером от 0,25 до 10 мм, обладающая водопрочностью и связностью.
Благоприятное влияние на агрономические свойства почв оказывает и микроструктура при условии ее пористости и водопрочности. Наилучшими являются микроагрегаты размером 0,25-0,05 и 0,05-0,01 мм. Более мелкие забивают поры, ухудшают пористость, воздухо- и водопроницаемость.
Водопрочность – способность агрегатов противостоять разрушающему действию воды. Связность — устойчивость агрегатов к механическому воздействию. Структурной считается почва, содержащая более 55 % водопрочных агрегатов (табл. 32). Важно, чтобы структурные отдельности пахотных горизонтов не разрушались при увлажнении почвы и при механическом воздействии сельскохозяйственных машин и орудий.
32. Шкала оценки структурного состояния почвы (по Долгову и Бахтину, 1966)
Содержание агрегатов 0,25-10 мм, % к веществу
Для бесструктурных почв характерен антагонизм между водой и воздухом. Кроме того, при высыхании бесструктурных почв, особенно тяжелых, они приобретают глыбистое монолитное сложение. Таким почвам значительно труднее придать благоприятное строение пахотного слоя при обработках.
Образование агрономически ценной структуры протекает под воздействием физико-механических, физико-химических, химических и биологических факторов. Физико-механические (и физические) факторы обусловливают крошение почвенной массы главным образом под влиянием изменяющегося давления или механического воздействия.
К ним относятся:
- Уплотняющее и рыхлящее действие корней
- Роющих и копающих животных
- Попеременное высушивание и увлажнение
- Замерзание и оттаивание почвы
- Воздействие почвообрабатывающих орудий
К физико-химическим и химическим факторам относятся коагуляция почвенных коллоидов и цементирующее воздействие ряда почвенных соединений. Клеящими и цементирующими веществами могут служить гумус, глинистое вещество, гидроксиды железа и алюминия, карбонат кальция. Одни минеральные соединения без гумусовых веществ не образуют водопрочных агрегатов.
Основная роль в образовании агрономически ценной структуры принадлежит биологическим факторам — растительности и почвенным организмам. Помимо механического уплотняюще-рыхлящего воздействия корней растительность является главным источником образования гумуса, а гуматы кальция выступают как важнейшие клеецементирующие вещества при возникновении высокопрочных агрегатов. При высоком содержании гуматов натрия образуются неводопрочные очень плотные агрегаты.
Наиболее сильное оструктуривающее воздействие на почву оказывает многолетняя травянистая растительность. Важную положительную роль играют почвенные насекомые и животные, особенно черви.
Утрата и восстановление структуры
Структура почвы динамична. Она разрушается под воздействием механической обработки, передвижения машин и орудий, людей, животных, под ударами дождевых капель. Важнейшие пути уменьшения механического разрушения структуры — обработка почвы в состоянии ее физической спелости, а также минимализация обработок.
Утрата агрегатами водопрочности может быть связана с физико-химическими явлениями — заменой обменных ионов кальция и магния на ион натрия. В этом случае при увлажнении происходит пептизация клеящих гумусовых веществ и, как следствие, разрушение агрегатов. Поэтому приемы химической мелиорации (известкование, гипсование и др.), обогащая почву обменным кальцием, способствуют улучшению структуры.
Биологические причины разрушения структуры связаны с процессами минерализации гумуса.
Восстановление и сохранение структуры почв — важное условие их рационального земледельческого использования, поддержания и повышения плодородия.
Его осуществляют агротехническими приемами:
- Посев многолетних трав,
- Обработка почвы в спелом состоянии,
- Минимализация обработок,
- Известкование кислых почв,
- Гипсование солонцов и солонцеватых почв,
- Внесение органических и минеральных удобрений.
Водопрочная структура восстанавливается под воздействием как многолетних трав, так и однолетних сельскохозяйственных растений. Однако оструктуривающее воздействие многолетних трав выше.
Они развивают более мощную корневую систему, более длительное время воздействуют на почву, оставляют в почве больше органического вещества (корней и послеукосной надземной массы), благоприятного по составу для деятельности микроорганизмов, образования гумуса.
Из однолетних культур пшеница, подсолнечник, кукуруза образуют мощные корневые системы и оказывают наибольшее положительное воздействие на структурообразование. Лен, картофель, капуста, имеющие слаборазвитые корневые системы, обычно оказывают незначительное оструктуривающее действие на почву.
Большое значение в оструктуривании почв имеет систематическое применение органических удобрений — навоза, торфокомпостов, сидератов. Они являются источником образования гумуса, значительно стимулируют деятельность червей и других представителей почвенной биоты, положительно влияющей на структурообразование.
Улучшение структурного состояния почв возможно также с помощью искусственных структурообразователей, преимущественно различных органических веществ, в частности полимеров и сополимеров, состоящих из производных акриловой, метакриловой и малеиновой кислот.
Общие и физические свойства
К общим физическим свойствам почвы относятся плотность твердой фазы, плотность сложения и пористость.
Плотность твердой фазы
Плотность твердой фазы почвы — отношение массы ее твердой фазы к массе воды при 4°С в том же объеме. Выражается она в г/см 3 . Ее величина определяется соотношением в почве компонентов органической и минеральной частей.
Для органических веществ (опад растений, торф, гумус) плотность твердой фазы колеблется от 0,2-0,5 до 1,0-1,4 г/см 3 , а для минеральных соединений — от 2,1-2,5 до 4,0-5,18 г/см 3 . Минеральные горизонты большинства почв имеют плотность твердой фазы от 2,4 до 2,65 г/см 3 , а торфяные горизонты — от 0,2-0,3 до 1,8 г/см 3 .
Плотность сложения почвы
Плотность (или плотность сложения) почвы — масса единицы объема абсолютно сухой почвы, взятой в естественном сложении. Выражается она в г/см 3 . Плотность почвы зависит от минералогического и гранулометрического составов, структуры и содержания органического вещества.
Она может существенно изменяться при обработках, под уплотняющим воздействием передвигающихся машин и орудий. Наиболее рыхлой почва бывает сразу после обработки, затем постепенно уплотняется, и через некоторое время ее плотность приходит в состояние равновесия, т. е. мало изменяется (до следующей обработки).
Верхние горизонты почвенного профиля, содержащие больше органического вещества, лучше оструктуренные, подвергающиеся рыхлению, имеют более низкую плотность, которая вниз по профилю возрастает. Плотность почвы сильно влияет на поглощение влаги и ее передвижение в профиле, газообмен, развитие корней, интенсивность микробиологических процессов, условия существования почвенных насекомых и животных.
Оптимальная плотность корнеобитаемого слоя для большинства культурных растений 1,0-1,2 г/см 3 .
Плотность суглинистых и глинистых почв, г/см 3
70
Липкость
Способность влажной почвы прилипать к другим телам. Это свойство проявляется в определенных пределах влажности, когда сцепление между почвенными частицами меньше, чем между ними и соприкасающимися предметами. Она определяется силой, требующейся для отрыва металлической пластинки от почвы, и выражается в г/см 2 .
По липкости почвы подразделяют (по Н. А. Качинскому): на предельно вязкие (>15 г/см 2 ), сильновязкие (5—15), средневязкие (2—5) и слабовязкие ( 2 ).Липкость оказывает отрицательное влияние на условия обработки, если состояние влажности и повышенная пластичность почвы вызывают ее прилипание к рабочим частям сельскохозяйственных машин. При этом увеличивается тяговое сопротивление и ухудшается качество обработки почвы
Липкость зависит от гранулометрического, минералогического и химического составов почвы, ее структурности и состава обменных катионов. Наибольшей липкостью обладают тяжелые бесструктурные и слабоострук-туренные почвы; насыщенность ППК ионом кальция снижает липкость, а внедрение в ППК иона натрия увеличивает ее.
Набухание
Увеличение объема почвы при увлажнении. Выражается в объемных процентах от исходного объема почвы. Это свойство связано со способностью коллоидов почвы сорбировать воду и образовывать гидратные оболочки вокруг минеральных и органических частиц.
Набухание наиболее выражено у глинистых минералов с расширяющейся решеткой, что обусловливает не только поверхностную сорбцию воды, но и проникновение ее в межпакетные промежутки минералов.
При этом объем таких коллоидов может увеличиваться в 2 раза. Повышению набухаемости способствует внедрение иона натрия в ППК. Набухание — отрицательное свойство; его проявление может сопровождаться выпиранием почвенной массы, разрушением структурных отдельностей.
Усадка
Сокращение объема почвы при высыхании. Это явление обратно набуханию и зависит от тех же факторов. Чем выше набухание почвы, тем сильнее ее усадка. Выражается она в процентах от объема исходной почвы. Усадка может вызывать разрыв корней, приводит к образованию трещин, что способствует непроизводительной потере влаги за счет испарения.
Связность
Способность почвы сопротивляться внешнему усилию, стремящемуся разъединить почвенные частицы. Выражают ее в кг/см 2 . Связность обусловлена силами сцепления между частицами почвы, зависит от гранулометрического, минералогического и химического составов, влажности, а также оструктуренности почвы и факторов, ее обусловливающих (гумусированности, состава обменных катионов и др.).
Наибольшей связностью обладают глинистые почвы и почвы, содержащие большое количество обменного натрия. Оструктуренные почвы характеризуются меньшей связностью. Невысокую связность имеют песчаные почвы. Минимальная связность наблюдается при влажности, близкой к влажности завядания.
Учет связности почвы имеет большое значение для качества выполняемых технологических операций – рыхления, перемешивания почвенных слоев, крошения почвы, вспашки и т. п. Эти приемы должны выполняться при наименьшей связности почвы. Определение такого состояния связано с понятием «физическая спелость почвы».
Физическая спелость
Состояние почвы, при котором она хорошо крошится на комки, не прилипая к орудиям обработки. Она определяется влажностью почвы и зависит от тех же факторов, что связность и липкость. Для среднесуглинистых почв физическая спелость наступает при следующей их абсолютной влажности (в%): дерново-подзолистые — 12-21, серые лесные—15—23, черноземы — 15—24, каштановые — 13—25, каштановые солонцеватые — 13—20.
С утяжелением гранулометрического состава интервал физической спелости почв во времени и по показателям влажности становится уже. Помимо физической спелости выделяют биологическую спелость, которая характеризуется таким температурным состоянием почвы, при котором активно развиваются биологические процессы (деятельность почвенной биоты, прорастание семян и др.). Для большинства почв она близка к 10 °С.
Твердость
Свойство почвы в естественном залегании сопротивляться сжатию и расклиниванию. Выражается она в кг/см 2 . Измеряется при помощи твердомеров. Ее показатели колеблются от 5 до 60 кг/см 2 и выше. Высокая твердость почвы — показатель плохих ее агрофизических качеств.
Твердость зависит от влажности, гранулометрического состава, оструктуренности, состава поглощенных катионов, содержания гумуса. С понижением влажности почвы твердость возрастает. Почвы хорошо гумусированные и структурные имеют меньшие показатели твердости, чем малогумусные и бесструктурные.
Насыщение ППК кальцием снижает твердость, а внедрение натрия в ППК значительно повышает ее. Так, у черноземов твердость в 10—15 раз ниже, чем у солонцов. Высокая твердость увеличивает тяговое сопротивление при обработке, снижает всхожесть семян, затрудняет проникновение корней растений.
Удельное сопротивление
Усилие, затраченное на подрезание пласта, его оборот и трение о рабочую поверхность. Измеряют сопротивление почвы в килограмме, приходящемся на 1 см 2 поперечного сечения пласта, поднимаемого плугом.
В зависимости от гранулометрического состава, физико-химических свойств, влажности, характера угодья удельное сопротивление почвы может изменяться от 0,2 до 1,2 кг/см 2 .
От удельного сопротивления почвы зависят затраты на ее обработку; с этой величиной связана норма выработки машинно-тракторного парка, расход топливно-смазочных материалов.
Приемы регулирования общих физических и физико-механических свойств почв
Для регулирования физических и физико-механических свойств почв в соответствии с требованиями растений и выбора наиболее эффективной технологии их возделывания агроному необходимо дать оценку параметрам этих свойств, а также оценить роль отдельных факторов в их формировании.
Поскольку гранулометрический и минералогический составы трудно поддаются изменениям при земледельческом использовании почв, следует учитывать главным образом их значение при выборе приемов регулирования физических и физико-механических свойств почв:
- Выбор оптимальных сроков обработки почв разного гранулометрического состава в зависимости от их влажности.
- Применение рыхления подпахотного слоя на тяжелых почвах.
- Дифференцированное осуществление прямых приемов их изменения (внесение органических удобрений, культура сидератов, регулирование состава обменных катионов и др.).
Сильное отрицательное влияние на физические и физико-механические свойства почвы оказывает тяжелая техника. Уплотняющее воздействие на почву может проявляться до глубины 50-80 см, а наиболее резко оно сказывается на плотности и порозности пахотного слоя.
По подсчетам разных авторов, при возделывании зерновых культур уплотняющему воздействию подвергается от 30 до 80 % площади поля, при этом значительная часть двукратному и более.
В результате уплотняющего воздействия техники снижается порозность, особенно некапиллярная, ухудшаются условия для проникновения корней, уменьшаются водообеспеченность растений и аэрация, содержание нитратов в почвенном растворе.
Следствием такого ухудшения физических свойств является значительное снижение урожая. Даже при однократном проходе техники урожай зерновых на следах прохода колес машин уменьшается до 50—60 %. Особенно сильно ухудшаются физические свойства на тяжелых слабооструктуренных почвах с повышенной влажностью (почвы таежно-лесной зоны, орошаемые земли).
Ослабления вредного уплотняющего воздействия тяжелой техники на почву достигают:
- Применением современных технологий возделывания культур, сокращающих количество проходов агрегатов по полю.
- Строгим соблюдением оптимальных сроков проведения полевых работ с учетом состояния влажности почвы, ее физических и физико-механических свойств, осуществлением мероприятий по их улучшению.
- Использованием активных приемов по борьбе с уплотнением (глубокое рыхление).
Важное значение также имеют применение существующих и разработка новых машин и агрегатов с минимальным уплотняющим воздействием на почву (широкозахватные и комбинированные агрегаты с многоцелевыми рабочими органами, машины и агрегаты на гусеницах и шинах низкого давления и др.).
Источник
➤ Adblockdetector