Приготовление органических компостов в ферментационных камерах
М. Линник В. Марченко О. Ляшенко
Растет производство — растут и отходы
Вместе с увеличением производства товаров широкого потребления растет и количество разнообразных отходов (в том числе и органических отходов сельскохозяйственного производства), которые не используются для изготовления вторичных продуктов — органических удобрений (компостов). Анализируя современное положение дел с применением органических удобрений, следует отметить, что за последние 10—12 лет общее их количество сократилось в 3—4 раза. По среднестатистическим данным, в настоящее время удобрений вносится не более 3,3 т/га. Подобная ситуация сложилась и с использованием минеральных удобрений. Дефицит органических удобрений только для основных потребителей, прежде всего сельскохозяйственных предприятий разных форм собственности, составляет свыше 65%. Вместе с тем рынок потребителей значительно пополнился фермерскими хозяйствами, большей частью производителями зерновых культур, садоводческими обществами, которые не имеют и не вырабатывают собственных органических удобрений.
Помимо весьма ощутимого недостатка органических удобрений при их применении возникают проблемы другого порядка. Во-первых, навоз, как правило, используется без соответствующей подготовки путем прямого внесения на поля или, в лучшем случае, накапливается и какое-то время выдерживается в буртах, что сопровождается значительной потерей органического вещества и азота. Потери азота достигают 40—50%. Во-вторых, использование свежего навоза связано с определенными агротехническими трудностями, что приводит не только к загрязнению посевных площадей семенами сорняков, но и несет опасность загрязнения окружающей среды.
Сегодня ни у кого не возникает сомнений в необходимости применения удобрений. Рациональное хозяйствование в области растениеводства без удобрений просто невозможно. Но вместе с тем при нынешней стоимости удобрений и регулярном ее повышении первоочередным становится вопрос эффективного их использования. Эффективность удобрений зависит в основном от правильного подбора, способа внесения и качества их приготовления. Именно поиск путей наиболее полного и оптимального использования питательных элементов удобрений растениями является главной задачей агрохимической науки и практики.
Среди растительных отходов, которые могут использоваться как органические удобрения, важное место занимает солома зерновых культур. Только запахивание пожнивных остатков после уборки зерновых эквивалентно по объемам процессу внесения навоза. Использование соломы в качестве органического удобрения тоже имеет свои особенности. Дело в том, что солома содержит значительное количество безазотных органических соединений (пентозаны, гемицеллюлоза, целлюлоза, лигнин), которые при распаде в почве под действием микроорганизмов нуждаются в значительном количестве минерального азота. Последействие от запахивания соломы приводит к снижению урожайности сельскохозяйственных культур и требует дополнительных норм внесения минерального азота (примерно 10—13 кг/т соломы). Очевидно, солому, как и навоз, перед применением следует подвергать предварительной обработке.
Вместо сжигания — компостирование
К наиболее распространенным, с экологической точки зрения, способам переработки и утилизации отходов (промышленных, коммунальных, бытовых, сельскохозяйственных, в том числе отходов животноводства и растениеводства) относятся: сжигание, термическая сушка, захоронение, анаэробное сбраживание и т.п. Среди них приоритетное место занимает компостирование, особенно когда речь идет о переработке отходов с высоким содержанием органических соединений. Способность органики к распаду под влиянием разнообразных групп микроорганизмов сопровождается термодинамическими процессами, которые при определенных условиях обеспечивают частичное обеззараживание, угнетение всхожести семян сорняков, неоднократное уменьшение обрабатываемых отходов (смесей) по объему и весу, повышением удельного содержания биогенных веществ. Эффективность компостирования как способа переработки органических отходов состоит в том, что при относительно невысоких технологических затратах он обеспечивает получение ценного и экологически безопасного конечного продукта — высококачественных органических удобрений. Сегодня существует большое разнообразие технологий и технологических схем компостирования, нашедших воплощение в разных областях перерабатывающих производств, однако подавляющее их большинство базируется на аэробной биотермической обработке органических отходов. Уровень механизации и автоматизации технологического процесса, последовательность выполнения технологических операций и использование тех или иных технических средств зависит от физикохимических свойств отходов и объемов их поступления в течение года.
Прямое применение технологий и технических средств, используемых на промышленных производствах для переработки сельскохозяйственных отходов, экономически неоправданно через высокую стоимость оборудования, а в большинстве случаев просто невозможно в связи с неприспособленностью рабочих органов оборудования к работе с компонентами, имеющими другие свойства, несогласованностью по производительности и т.д.
Один из методов получения высококачественных органических удобрений — биотермическая твердофазная ферментация навоза с разнообразными органическими отходами. Твердофазная ферментация отличается от широко известного естественного компостирования органических удобрений в буртах тем, что этот процесс можно значительно сократить во времени до 7—10 дней. Одновременно есть возможность контролировать и регулировать основные факторы, влияющие на его ход — влажность и дисперсность смеси, наличие достаточного количества питательных веществ, соотношение между углеродом и азотом (С:N), температуру и аэрацию.
Основная цель такого способа — получить удобрения с максимально сохраненными питательными веществами и свойствами, близкими к свойствам гумуса. Аэрация и высокотемпературные процессы дают возможность избавиться от неприятных запахов, подавить всхожесть семян сорняков и обеззаразить компост от патогенных микроорганизмов. Значительно большее содержание питательных веществ на единицу массы полученного компоста повышает его ценность как удобрения и уменьшает затраты на транспортировку и внесение на поля.
Формула успеха
На первом этапе предусмотрена подготовка смеси перед загрузкой на ферментацию. При традиционном компостировании, например, в буртах смесь готовят, смешивая навоз с соломой до определенной влажности. При этом не учитывают количества и баланса питательных веществ в исходной смеси, необходимых для активной жизнедеятельности микроорганизмов. В предложенном же методе добавление к навозу органических отходов предусматривает две цели: доведение исходной смеси до определенной влажности и создание структуры с достаточным количеством воздушных пор для аэрации, а также интенсификацию процесса и увеличение количественного распада органики в смеси. Т.е. органические отходы растительного происхождения при компостировании следует рассматривать не только как влагопоглощающий и структурообразующий компонент, но и как подпитывающую добавку для улучшения жизнедеятельности микрофлоры.
В состав смеси, которая закладывается на ферментацию, кроме навоза входят и органические отходы (солома, опилки, измельченная стружка и т.п.), а иногда и рециркуляционный компост. Чтобы определить количество этих компонентов, предлагаем следующий расчет.
Количество влагопоглощающего и структурообразующего материала можно определить по формуле:
где Gв и Gн — соответственно масса влагопоглотителя и навоза, т;
Wн и Wв — влажность навоза и влагопоглотителя (определяют перед смешиванием),%;
Wсм — влажность смеси, которую закладывают на ферментацию,%.
Если компостировать жидкий навоз, содержащий значительно меньше питательных веществ в количественном отношении, надо добавлять больше влагопоглотителей. Но тогда не только уменьшается доля питательных веществ в полученной смеси, но и повышается их баланс (прежде всего это касается соотношения углерода и азота). Поэтому подготовка смеси только по влажности не всегда дает нужный эффект в процессе компостирования и получения качественного компоста.
Для оптимальной жизнедеятельности микроорганизмов необходимо соотношение углерода и азота 25—30:1. Исходя из этого, для определения количества органических отходов как энергоносителя предлагаем следующую формулу:
Gд = к Gн (100-Wн) / (100-Wд), (2)
где к — поправочный коэффициент, учитывающий содержание питательных веществ в исходных материалах:
где Сн и Сд — содержание углерода в сухом веществе навоза и добавки,%;
Nн Nд — содержимое азота в сухом веществе навоза и добавки,%;
KCN — желательное соотношение углерода и азота.
Сравнивая рассчитанные значения Gв и Gд для одного и того же материала, можно довольно точно приготовить исходную смесь не только нужной влажности и структуры, но и сбалансированную по питательным веществам. Если Gд > Gв, то количество органических отходов принимают из расчета для Gд. Если Gд значительно меньше Gв (это касается компостирования жидкого навоза), то как дополнительный материал рекомендуем использовать подсушенный рециркуляционный компост, сбалансированный по своей природе.
Зная исходные данные материалов, которые закладывают на компостирование, достаточно один раз рассчитать и затем готовить смесь согласно полученным массовым пропорциям. Значительные отклонения от расчетных пропорций приведут к недостаточному разогреву смеси удобрений и быстрому затуханию процесса или к получению компоста с другими свойствами, который нуждается в более длительной обработке и окончательном созревании в низкотемпературных условиях.
По результатам научных исследований предложена методика расчета исходной смеси с учетом физико-химических свойств компонентов, разработан технологический регламент процесса ускоренного компостирования, в основу которого положен способ получения удобрений, а также проектно-сметная документация на модульный образец ферментатора.
Главное звено — ферментатор
Камера ферментатора выполняется с достаточной теплоизоляцией для уменьшения потерь тепла при работе зимой. Загрузка осуществляется через секционные ворота тракторным погрузчиком. В донной части ферментационной камеры устроены аэрационные каналы.
Аэрация осуществляется по схеме «вверх» с регулированием подачи свежего воздуха напорным вентилятором. Вытяжная вентиляция удаляет отработанный воздух из верхней части камеры, насыщенный газами и влагой. При зимнем режиме работы теплый отработанный воздух используется для подогрева приточного воздуха через рекуперативный теплообменник типа «труба в трубе». Работа систем аэрации и вентилирования поддерживается в автоматическом режиме в зависимости от температуры смеси. Система контроля за процессом состоит из датчиков и приборов измерения температуры и содержания кислорода в газовоздушном пространстве перерабатываемой смеси.
Техническая характеристика ферментатора
Полезный объем ферментационной камеры, м3 20
Толщина прослойки смеси (максимальная), м 2
Установленная мощность, кВт 1,1
Влажность исходной смеси, % 70—75
Рабочая температура, 0С 50—70
Срок одного цикла переработки, суток 10—15
Биотермический процесс компостирования происходит непосредственно в ферментаторе.
Согласно приведенным положениям подготовка исходной смеси и аэрация ее по всему объему дают возможность довольно быстро и эффективно провести переработку навоза с растительными отходами и получить компост с нужными свойствами. Интенсивность повышения температуры — 1,5—2 °С/ч, выход на термофильный режим (более 50 °С) длится 1—1,5 суток. Минимальный срок продолжительности переработки в таком режиме составляет 5—7 дней.
Полученный по такой технологии компост содержит (из расчета на сухое вещество): органики — не менее 75%, общего азота — 1,9—2,3%, фосфора — 0,4—0,6%, калия — 0,6—1,0%.
Следует обратить внимание и на технико-экономические преимущества технологии: наряду с ускорен ной переработкой органических отходов повышается качество и эффективное действие удобрений, что обеспечивает рост урожайности сельскохозяйственных культур на 10—25%; снижаются затраты на транспортно-технологические операции при внесении удобрений на поля; экономятся значительные дополнительные капитальные вложения в строительство хранилищ и сооружений для накопления навоза; достигается ускоренный и эффективный кругооборот биогенных органических веществ в природе с максимальным сохранением их ценности.
Количество органических отходов сельскохозяйственного производства, используемых нерационально или вовсе не используемых, с каждым годом растет, вместе с тем усложняются и проблемы их утилизации. Современные экономические и экологические факторы и высокая стоимость минеральных удобрений, которые лучше использовать совокупно с органическими, требуют пересмотра отношения к отходам как потенциальному источнику для производства органических и органично-минеральных удобрений. Компостирование является одним из лучших решений этой проблемы, на которую обратили внимание ведущие зарубежные разработчики и пользователи, поскольку оно гарантирует пере работку отходов и позволяет эффективно вводить их в кругооборот в форме высококачественных органических удобрений. По нашим прогнозам, в ближайшей перспективе компосты, полученные по таким технологиям, могут быть использованы при выращивании и производстве экологически чистых пищевых продуктов. Их можно применять как компоненты искусственной почвы теплиц, парников, субстратов для выращивания грибов, а также при производстве высококачественных органично-минеральных удобрений под конкретные культуры с реализацией многочисленным потребителям.
Источник
Технология производства органических удобрений
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ЮГОРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
КАФЕДРА: ТЕХНОЛОГИИ ПРИРОДОПОЛЬЗОВАНИЯ
«ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ОРГАНИЧЕСКИХ УДОБРЕНИЙ»
Студент факультета природопользования
Специальность: 060800 «Экономика управления на предприятиях природопользования»
Руководитель : БЕХТЕРЕВА А.М.
г. Ханты- Мансийск 2002 год
стр. | ||
1. | ВВЕДЕНИЕ | 3 |
2. | ||
5 | ЗАКЛЮЧЕНИЕ | 30 |
6 | СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ | 31 |
В курсовой работе на тему: «Производство органических удобрений на основе торфа» работе я попытаюсь разобраться в технологии производства органического удобрения «Оксидат.»
Источником основного сырья — торфа, для производства торфопродукции, можно использовать торфяные месторождения.
Другие ингредиенты необходимые для обеспечения производства потребительской продукции завозятся. По данной технологии сырьём для изготовления органических удобрений служит торф, которым наш округ очень богат, именно поэтому необходимо уделять должное внимание изучению технологий, с помощью которых в производственно- хозяйственную деятельность можно вовлекать не используемые виды ресурсов.
Тема освоения технологий переработки торфа актуальна на сегодняшний день, так как, в последние годы, очевидна необходимость развития в нашем округе других отраслей промышленности и использования различных сырьевых ресурсов.
Следует подчеркнуть, что аналогичные виды продукции в настоящее время производятся в Челябинской, Ярославской, Пермской, Ленинградской областей.
Ставлю своей целью : изучить технологию изготовления органических удобрений на основе торфа.
Разработку данной темы буду проводить исходя из поставленных задач:
— Дать характеристику технологическим процессам производства, рассмотреть поэтапно каждую стадию производства.
— Дать характеристику используемому сырью и выпускаемой продукции
— Изучить меры принимаемые по обеспечению безопасности производства и воздействия его на окружающую природную среду.
— На основании всего изученного материала сделать соответствующие выводы.
состоит двух этапов.
На первом этапе описали все стадии технологического процесса
Во второй главе дали характеристику обеспечения техники безопосности, характеристики организации труда и мер применяемых для снижения негативных последствий воздействия на окружающую природную среду,
ХАРАКТЕРИСТИКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА
1.1 Используемое сырьё
Западная Сибирь является крупнейшими в мире торфяным регионом, в котором сосредоточено около 70% всех мировых запасов торфа. Общая площадь заболоченных территорий на Западно-Сибирской равнине составляет около 800 тыс.км², из них примерно 400 тыс.км² приходится на торфяные залежи. В Западной — Сибири выявлено 4822 месторождения торфа общей площадью в границах промышленных запасов 40779,2 тыс. га и суммарными ресурсами 115 498,5 млн.т.
Торф относится к классу углеводород содержащего природного сырья и наряду с нефтью, газом и каменным углём является сырьём для производства большого ряда продукции, имеющий спрос в хозяйственной деятельности человека.
Торф представляет собой смесь разложившихся в условиях избыточного увлажнения остатков растений, в основном болотных. Различают три вида торфа: верховой, низинный и переходный.
Верховой торф образуется на бедных питательными веществами возвышенных местах рельефа. К растениям торфообразования верхового торфа относятся: сфагновые мхи, пушица, подбел, багульник, осока топяная и др. Верховой торф характеризуется повышенным количеством органического вещества, высокой кислотностью, большой поглотительностью и малым содержанием питательных веществ. Применяют этот торф главным образом в качестве подстилки и для компостирования.
Низинный торф образуется на богатых питательными веществами пониженных частях рельефа. Растениями – торфообразователями низинного торфа являются осоки, тростник, хвощ, таволга, сабельник и др. Низинный торф содержит больше питательных веществ, чем верховой. Наиболее целесообразно его использовать на приготовление различных компостов.
Переходный торф занимает промежуточное положение между верховым и низинным.
Торф содержит до 3% органического азота, богатый набор макро- и микроэлементов, различные органические кислоты, витамины, гуминовые стимуляторы роста, обладает высокими показателями биологической активности, емкости ионного обмена, имеет уникальное тепловое, физико-механические и структурные свойства.[1]
1.2 Характеристика выпускаемой продукции
Население округа использует торф в качестве удобрения, без предварительной обработки обогащающими добавками, что само по себе малоэффективно, поэтому насыщение рынка доступными и не дорогостоящими удобрениями на основе торфа на территории округа актуально. Потребителями удобрений на основе торфа в первую очередь станут садоводы-любители.
«Оксидат» — разновидность гуминовых препаратов, который представляет собой водо-растворимый продукт с содержанием азота до 20%. Используется в виде 0,75-1,0% водного раствора для предпосевной обработки семян зерновых культур и в виде 0,01% водного раствора для опрыскивания вегетирующих растений. В медицине и ветеринарии этот препарат используется, в частности, для лечения онкологических заболеваний, язвенных болезней и в офтальмологии. Если препарат оксидат из торфа будет использован для предпосевной обработки семян зерновых культур и клубней картофеля в округе, то потребность КФХ Ханты-Мансийского автономного округа составит (из расчёта за 1998 год):
— для картофеля – 21600 л .
— для кормовых – 4710 л.
Оксидат торфа разрешен также к применению в качестве ранозаживляющего средства и кормовой добавки. Его применение в дозах 0.6 мл/кг для цыплят – бройлеров; 0.5 мл/кг для телят и 0.3мл/кг для поросят молочного периода позволяет добиться 90 – 100 % сохранности за счет выживания слаборожденных животных. Значительное увеличение среднесуточных привесов (до 50 %) обеспечивает 20 – 30 % прибавку произведенной продукции (мяса птицы, говядины, свинины) без дополнительных затрат кормов, исключая применение антибиотиков и анаболических гормонов. Препарат перспективен в качестве кормовой добавки, повышающей продуктивность и сохранность сельскохозяйственных животных для получения экологически безвредной мясопродукции.[2]
1.3 Описание технологического процесса по стадиям.
описание технологического процесса.(рис.1.3.1. стр, 9)
технологическая схема производства (рис. 1.3.2. стр.10)
Технологический процесс производства «Оксидата торфа» включает следующие стадии;
— завоз сырья и сушка торфа в буртах;
— предварительное смешивание торфа с водой;
— подача и дозирование водной суспензии торфа, водного раствора аммиака и перекиси водорода;
— декантация (отстаивание щелочной суспензии торфа);
— пропускание жидкой фазы через фильтры;
— — разлив в тару или емкости;
— транспортировка и хранение готовой продукции.
БЛОК СХЕМА ПРОИЗВОДСТВА «ОКСИДАТА ТОРФА». Рис.1.1
| ||
|
22 23
Отходы Оксидат торфа
|
|
Вода В линию подготовки торфа
1- Бункер накопитель торфа 9-Насос водного аммиака 17- -Ёмкость-накопитель для отстаивания
2- Транспортёр-дозатор торфа 10- Расходомер-дозатор водного аммиака щелочной суспензии торфа
3- Сепарирующее устройства торфа 11-Ёмкость перекиси водорода 18-Насос щелочной суспензии торфа
4- Еакопитель отходов торфа 12 -Насос перекиси водорода 19-Центрофуга
5- Ёмкость-дозатор водной суспензии торфа 13 -Расходометр-дозатор перекиси водорода 20- Ёмкость накопитель для Оксидата торфа
6- Насос водной суспензии торфа 14- Ёмкость воды 21–Ёмкость накопитель фугата
7- Экстратор для щелочной суспензии торфа 15- Парогениратор 22- Комбинированное сито:
8- Емкость аммиака 16- Система автоматики металлическое + капроновое
Рис 1.2. Схема материальных потоков линии по
производству «Оксидата торфа».
3 4 5
|
|
|
|
Технологический процесс производства «Оксидата торфа» (рис.1.2. стр, 9) осуществляется следующим образом.
1.3.1 Завоз сырья.
Торф с полей добычи торфа на месторождении завозится автотранспортом и сгружается на площадку подготовки торфа в бурты размером (6х6х3) м. Из буртов торф загружается в транспортную тележку или самосвал и перевозится к месту переработки.
1.3.2 Сушка торфа.
Торф в буртах доводится до влажности 60-65% методом естественной I сушки в течение 2-2,5 месяцев с двух-трехкратной его перебуртовкой с периодичностью 15-20 дней.
1.3.3 Сепарация торфа.
Сепарация торфа — отделение его от примесей частиц очеса, древесины и корневищ размером свыше 25 мм до их содержания не более 10 %.
Из буртов торф загружается в транспортную тележку или самосвал и выгружается в лоток бункера — накопителя 1. При подъеме лотка бункера-накопителя торф ссыпается на скребковый транспортер 2 и подается им на сепарирующее устройство 3, в котором дробятся нетехнологичные включения и происходит отделение мелкого пня, корней и торфа размером частиц крупнее 25 мм. Посторонние включения из сепаратора 3 ссыпаются на транспортер, выводятся им за пределы цеха и сгружаются в накопитель отходов 4. Подрешет-ный продукт попадает на шнековый транспортер и далее с помощью скребкового транспортера подается в емкость-дозатор 5 для приготовления водной суспензии торфа.
1.3.4 Подготовка водной суспензии торфа.
Отсепарированный и измельченный торф ссыпается в емкость-дозатор водной суспензии торфа 5 объемом 1,5-2 м 3 . Сюда же подается горячая вода из рубашки экстрактора после его охлаждения до 80-90°С (при первом запуске — холодная вода) и дополнительно — холодная вода из емкости 14, или из водопроводной сети. Общее количество воды составляет: горячая вода из рубашки экстрактора + вода влажного торфа + холодная вода. Соотношение торфа к воде соответствует 1:9,5. Для смешивания торфа с водой в емкости-дозаторе 5 в него сверху смонтирован привод, на выходном конце которого закреплен вал с лопастями. Скорость вращения лопастей — 100 — 200 об/мин.
Смесь торфа с водой перемешивается в емкости-дозаторе 5 в течение 1-2 мин. Перемешанная суспензия торфа остается в емкости-дозаторе 5 (настаивается) в течение времени, за которое из экстрактора удаляется самотеком щелочной экстракт из торфа (20-40 мин.).
Перед подачей водной суспензии торфа из емкости-дозатора 5 в экстракор 7 она еще раз перемешивается в течение 1-2 мин. Подача и дозирование водной суспензии торфа, аммиака и перекиси водорода.
Водная суспензия торфа из емкости-дозатора 5 насосом 6 подается в экстрактор 7. К водной суспензии в экстракторе 7 добавляется водный раствор аммиака из емкости 8 насосом 9 через расходомер-дозатор 10.
Перекись водорода из емкости 11 насосом 12 подается в расходомер-дозатор 13, а затем в экстрактор 7.
Количество добавляемых концентрированных растворов 25%-ой аммиачной воды и 30%-ой перекиси водорода составляет по 25 % от массы абсолютно сухого торфа.
Полная загрузка экстрактора (60 % от общего объема реактора, равного 1,6 м 3 ) составляет 960 л.
В 960 л содержится:
— торфа абсолютно сухого — 87,3 кг;
— аммиачной воды, 25 %-ной — 21,8 л;
— перекиси водорода, 30 %-ной — 21,8 л.
Общее соотношение торфа к жидкой фазе суспензии соответствует 1:10.
После окончания загрузки экстрактора отключается подача водной суспензии торфа, аммиака и перекиси водорода. Происходит запуск парогенератора 15 для обогрева рубашки экстрактора 7. Вода в парогенератор 11 поступает из емкости 14 или из водопроводной сети. Щелочная суспензия торфа в экстракторе прогревается до 120°С, при этой температуре осуществляется процесс экстрагирования.
Время и температура экстракции гуминовых кислот из торфа поддерживается в экстракторе системой автоматики 16 в пределах 120±5 °С путем нагрева водной суспензии в экстракторе 7 пропусканием пара в рубашку экстрак-гора от парогенератора 15. Время экстракции — 4-4,2 часов. После окончания 1роцесса экстракции парогенератор 15 отключается. В рубашку экстрактора 7 окачивается холодная вода из емкости воды 14 для понижения температуры елочной суспензии торфа в экстракторе 7 до температуры 80-90°С. Щелочная суспензия торфа из экстрактора 7 самотеком поступает в промежуточную емкость — накопитель 17, которая установлена ниже экстрактора на 1,0 м.
1.3.6 Декантация щелочной суспензии торфа.
В промежуточной емкости-накопителе 17 осуществляется хранение щелочной суспензии торфа в течение 12-14 часов (период от окончания экстракции до начала центрифугирования). При этом происходит естественное расслоение (декантация) жидкой и твердой фаз с образованием примерно 2/3 объема (в верхней части емкости-накопителя 17) более жидкой части щелочной суспензии торфа и 1/3 объема (в нижней части емкости-накопителя 17) более густой части суспензии.
Использование накопителя 17 обеспечивает быстрое освобождение экстрактора от щелочной суспензии торфа после экстракции. Частичное расслоение жидкой и твердой фаз щелочной суспензии торфа в емкости-накопителе 17 нормализует работу центрифуги 19.
Из емкости-накопителя 17 щелочная суспензия торфа насосом 18 перекачивается в центрифугу 19, в которой происходит разделение суспензии на жидкую фазу («Оксидата торфа») и полужидкую (фугат).
Для обеспечения нормальной работы центрифуги сначала перекачивается более жидкая часть щелочной суспензии торфа, расположенная в верхней части емкости 17 и занимающая
2/3 объема, затем — оставшаяся, более густая часть суспензии, находящаяся в нижней части емкости-накопителя 17.
Для повышения выхода жидкой фазы щелочной суспензии («Оксидат торфа») и снижения содержания в ней твердых частиц торфа, при перекачке «Оксидата торфа» из центрифуги 17 в емкость-накопитель 20 его дополнительно пропускают через 2 специально изготовленных фильтра 22 и 23. Фильтр 22 осуществляет удаление более крупных частиц торфа из жидкой фазы. Этот фильтр представляет собой металлическую сетку с размерами ячейки 2,0-2,5 мм.
Второй фильтр (23) удаляет более мелкие частицы торфа. Фильтр 23 включает металлическую и капроновую сетки с диаметром отверстий — 1 мм. При снижении потока «Оксидата торфа» через указанные фильтры в результате их засорения процесс перекачки «Оксидата торфа» останавливают, фильтры снимают, очищают, промывают и вновь устанавливают.
Жидкая часть («Оксидат торфа») подается в емкость-накопитель 20, откуда поступает для разлива в потребительскую тару.
Полужидкая фракция (фугат) из центрифуги подается в емкость-накопитель 21 и может быть использована в качестве компонента торфяных удобрений и субстратов.
1.3.8 Фасовка и разлив.
Фасовка «Оксидата торфа» производится в полимерные или стеклянные бутыли по 0,5, 1,0, 1,5 л либо оксидат перекачивается в цистерну, а затем раздаточной колонкой переливается в любую тару потребителя.
Для транспортировки бутыли с «Оксидатом торфа» помещают в транспортную тару деревянную по ГОСТ 18575-81 или полимерную по ГОСТ 27324-87.
Для сельскохозяйственных предприятий, по согласованию с заказчиком, «Оксидат торфа» поставляется в цистернах объемом до 60м 3 по ГОСТ 2263-79.
1.4 Хранение и транспортировка готовой продукции.
Транспортные упаковки «Оксидата торфа» хранят в штабелях в закрытом складском помещении, защищающем препарат от света и воздействия атмосферных осадков, при температуре не ниже 0 °С.
Транспортировка готовой продукции осуществляется всеми видами транспорта согласно действующим правилам перевозок, обеспечивающим сохранность продукции и тары.
Срок хранения «Оксидата торфа» составляет 5 лет.
1.5 Учет и контроль производства.
В процессе производства всех видов продукции осуществляется контроль над качеством исходного сырья и готовой продукции. Тип и вид торфа, степень разложения принимаются по данным паспортизации торфяной залежи. Определение влажности, зольности, содержания азота, фосфора и калия, а также проведение ряда других анализов осуществляется в лаборатории, размещенной на площади бытовых помещений. Каждая транспортная единица с торфом, доставляемая в цех, подвергается визуально или органолептически пригодности торфа по остаточным признакам саморазогревания (запах, очаги с образованием полукокса, цвет). Периодически контролируется фракционный состав подготовленного торфа, для этого отбирается в 3-4 приема общая проба массой 1-2 кг и подвергается рассеву на ситах. Для установления режима сушки гранулированного торфа контролируется значение начальной и конечной влаги торфа. Они определяются ускоренным методом по ГОСТ 11305-83.
1.6 Характеристика линии по производству « Оксидата торфа».
Выбор оборудования произведен на основании разработок института СибНИИТ. Следует отметить, что в настоящее время в России и странах СНГ не существует серийного производства оборудования по переработке торфа. Проектом применено стандартное оборудование, изготавливаемое для других отраслей промышленности, а также нестандартное оборудование, изготавливаемое по отдельным заказам.
С цехом по производству удобрений сблокированы административно бытовые -помещения и лаборатория по контролю за качеством сырья и готовой продукции.
Торф из бункера барабанным питателем (1) подается в мешалку, в которую подается из бака горячая вода. После перемешивания суспензия фекальным насосом подается в реактор. В реактор подается из мерников аммиачная вода и перекись водорода, а также подводится пар. Соотношение составляющих определено регламентом, разработанным институтом СибНИИТ. Под действием высокой температуры в течение 5 часов происходит процесс экстрагирования. Полученная в результате экстрагирования суспензия фекальным насосом подается в промежуточную емкость в которой происходит разделение суспензии методом деконтации. Жидкая фракция самотеком (порциями по 100 л) подается в центрифугу в которой происходит окончательное разделение суспензии на жидкость («Оксидат торфа») и твердую фракцию (фугат). «Оксидат» торфа насосом центрифуги подается в специально установленные баки.
Из баков «Оксидат торфа» на разливочном устройстве разливается по бутылкам или бочкам. Фугат из центрифуги подается в накопительную емкость .По мере накопления емкости с фугатом отвозятся погрузчиком на питатель линии'» расфасовки торфоминеральных смесей. [3]
1.7 Используемое оборудование
1. Экстрактор Сэрн-в 1,6-2
Производительность, т/сутки -0,5
Вместимость корпуса, м 3 -1,6
Габаритные размеры, мм
Мощность, кВт — 2,2
2. Центрифуга ОМБ-803К
Рабочий объем, дм 3 -100
Габаритные размеры, мм
до разъема крышки -1000
при открывании крышки -2200 Мощность, кВт -7,5
2. Насос Х50-32-125К (для подачи перекиси водорода и аммиачной воды)
Подача, м 3 /ч -12,5
Мощность, кВт — 1,4
Изготовитель: «Уралгидромаш», г. Екатеринбург
4. Насос фекальный СМ 80-50-200
Подача, м з /ч — 35
Напор, м з /ч — 10
Мощность, кВт — 5,5
1.8 Характеристика задействованных кадров
Численность производственного персонала определена из условия технологической необходимости обслуживания оборудования и приведена в следующей таблице.
ПЛАН ПО ПЕРСОНАЛУ
Категории работников | |
I Управление: | |
Директор | 1 |
Зам. директора | 1 |
Гл. бухгалтер | 1 |
Бухгалтер- кассир | 1 |
Делопроизводитель | 1 |
II Производство: | |
Гл. инженер | 1 |
Технолог | 1 |
Механик | 1 |
Энергетик | 1 |
Зав. складом | 1 |
Кладовщик | 1 |
Оператор оборудования | 12 |
Тракторист | 2 |
Разнорабочие | 10 |
Водитель автомобиля | 4 |
Водитель легкового автомобиля | 1 |
Водитель легкового автомобиля | 1 |
Лаборант | 1 |
Сменный мастер | 2 |
Слесарь электрик | 2 |
Слесарь наладчик | 2 |
Уборщик производственных помещений | 2 |
Уборщик производственных помещений | 1 |
Сторожа | 3 |
Инженер маркетинга | 1 |
Инженер МТС | 1 |
ВСЕГО | 56 |
В целях повышения эффективности работы рекомендуется коллективная форма организации труда, которая осуществляется путем создания производственных бригад. Весь технологический и обслуживающий персонал, включая сменных мастеров, объединяется в сквозную комплексную бригаду с частичным совмещением специальностей. Оплата труда производится по конечному результату — выпуску готовой продукции с учетом трудового вклада каждого члена бригады.
ВЫВОД: Подробное изучения стадий технологического процесса позволяет проследить все изменения объекта труда и его свойств. Можно сказать: что все этапы производства последовательны и объект труда последовательно проходит все стадии производства на каждом из которых он видоизменяется, приобретая новые свойства.
Недопустимо нарушение технологической цепи производства, так как каждый из этапов следует за другим, нарушение такой последовательности приведет к разрыву технологической цепи и остановке производства.
2.1. Мероприятия по взрывопожаробезопасности.
Технологический процесс производства комплексных удобрений разработан в соответствии с действующими нормами и правилами и предусматривает мероприятия, обеспечивающие взрывопожаробезопасность.
Работа с торфом влажности 50-60% исключает интенсивное выделение сухой торфяной пыли. Температура возгорания торфяной пыли 205°С, древесины в торфе 240 С. Эксплуатация площадки хранения торфа ведется в соответствии с «Правилами пожарной безопасности для предприятий торфяной промышленности», согласованными с ГУПО МВД СССР 31.12.90г.гл.6.7 «Склады угля и торфа».
Приемка и хранение торфа с явно выраженными признаками возгорания запрещается. Контроль температуры торфа в буртах осуществляется термометрами. При повышении температуры торфа выше 60°С, производится его перебуртовка. Тракторы, работающие на площадке хранения торфа оборудуются искрогаситель.
Производственное здание функционально разбито на 3 зоны: производство, складская зона, административно-бытовые помещения, представляют собой 1 пожарный отсек. Степень огнестойкости здания Ш А, категория В-2. Здание оборудовано автоматической пожарной сигнализацией и внутренними противопожарными водоводами.
Проектом предусмотрено наружное пожаротушение производственного корпуса и площадки складирования торфа.
2.2. 0храна труда и техника безопасности. Промсанитария.
В процессе производства, кроме требовании строительных норм и правил, выполнены требования санитарно-гигиенических норм и правил Минздрава РФ, правил безопасности в газовом хозяйстве Госгортехнадзора РФ, положения по организации работ по охране труда на предприятиях.
Технологическое оборудование применяемое для производства удобрения по взрывоопасности относятся к категории Б (СНиП П — М.2-72), класс помещений по ПУЭ П-11. Производственные процессы по санитарной характеристики относятся к группе 1Б.
Характеристика сырья добавок по токсичности и предельно-допустимой концентрации в воздухе рабочей зоны даны в следующей таблице
Наименование сырья, Полупродуктов,готового продукта, отходов производства | Характеристика токсичности | ПДКв воздухерабоче и зоны производствен ных помещений |