Температура поверхности почвы летом
ТЕМПЕРАТУРНЫЙ РЕЖИМ ПОЧВЫ
Лучистая энергия в деятельном слое преобразуется в тепловую. При положительном радиационном балансе (днем, летом) часть этого тепла затрачивается на нагревание деятельного слоя, часть — на нагревание приземного воздуха, растений, а часть — на испарение воды с почвы и растений. Когда радиационный баланс отрицательный (ночью, зимой), затраты тепла, связанные с эффективным излучением деятельной поверхности, компенсируются приходом тепла из деятельного слоя, от воздуха, часть тепла выделяется при конденсации (сублимации) водяного пара на деятельной поверхности. Этот приход и расход энергии на деятельной поверхности выражаются уравнением теплового баланса:
где В — радиационный баланс деятельной поверхности; А — поток тепла между деятельной поверхностью и нижележащими слоями; Р — поток тепла между поверхностью и приземным слоем воздуха; LЕ — поток тепла, связанный с фазовыми преобразованиями воды (испарение — конденсация).
Другие составляющие теплового баланса земной поверхности (потоки тепла от энергии ветра, приливов, от выпадающих осадков, расход энергии на фотосинтез и др.) значительно меньше указанных ранее членов баланса, поэтому их можно не принимать во внимание.
Смысл уравнения заключается в уравновешивании радиационного баланса земной поверхности нерадиационной передачей тепла.
Суточный и годовой ход температуры поверхности почвы
Из того, что тепловой баланс земной поверхности равен нулю, не следует, что температура поверхности не меняется. Когда передача тепла направлена вниз (+А), то значительная часть тепла, приходящая к поверхности сверху, остается в деятельном слое. Температура этого слоя, а следовательно, и деятельной поверхности при этом возрастают. Напротив, при передаче тепла через земную поверхность снизу вверх (-А) тепло в атмосферу уходит прежде всего из деятельного слоя, вследствие чего температура поверхности понижается.
Дневное нагревание и ночное охлаждение поверхности почвы вызывают суточные колебания ее температуры. Суточный ход температуры имеет обычно по одному максимуму и минимуму. Минимум температуры поверхности почвы при ясной погоде наблюдается перед восходом Солнца, когда радиационный баланс еще отрицателен, а обмен теплом между воздухом и почвой незначителен. С восходом Солнца, по мере увеличения радиационного баланса, температура поверхности почвы возрастает. Максимум температуры наблюдается около 13 ч, затем температура начинает понижаться.
В отдельные дни указанный суточный ход температуры почвы нарушается под влиянием облачности, осадков и других факторов. При этом максимум и минимум могут смещаться на другое время.
Разность между максимумом и минимумом в суточном или годовом ходе называется амплитудой хода температуры.
На амплитуду суточного хода температуры поверхности почвы влияют следующие факторы:
время года : летом амплитуда наибольшая, зимой — наименьшая;
географическая широта : амплитуда связана с полуденной высотой Солнца, которая возрастает в направлении от полюса к экватору, поэтому в полярных районах амплитуда незначительна, а в тропических пустынях, где к тому же велико эффективное излучение, она достигает 50. 60 0С;
рельеф местности : по сравнению с равниной южные склоны нагреваются сильнее, северные — слабее, а западные — несколько сильнее восточных, соответственно изменяется и амплитуда;
растительный и снежный покров : амплитуда суточного хода под этими покровами меньше, чем при их отсутствии, так как они уменьшают нагрев и охлаждение поверхности почвы;
цвет почвы : амплитуда суточного хода температуры поверхности темных почв больше, чем светлых, поскольку поглощение и излучение радиации у первых больше, чем у вторых;
состояние поверхности : рыхлые почвы имеют большую амплитуду, чем плотные; в плотных почвах поглощенное тепло распространяется вглубь, а в рыхлых остается в верхнем слое, поэтому последние больше нагреваются;
влажность почвы : на поверхности влажных почв амплитуда меньше, чем на поверхности сухих; во влажных почвах поглощенное тепло, как и в плотных почвах, распространяется вглубь, а часть тепла затрачивается на испарение, вследствие этого они меньше нагреваются, чем сухие;
облачность : в пасмурную погоду амплитуда значительно меньше, чем в ясную, так как облачность уменьшает дневной прогрев и ночное охлаждение деятельной поверхности.
Годовой ход температуры поверхности почвы определяется различным приходом солнечной радиации в течение года.
Наименьшие температуры на поверхности почвы обычно наблюдаются в январе — феврале, наибольшие — в июле или августе.
На амплитуду годового хода температуры поверхности почвы влияют те же факторы, что и на амплитуду суточного хода, за исключением широты места. Амплитуда годового хода в отличие от суточного возрастает с увеличением широты.
Теплофизические характеристики почвы
Между поверхностью почвы и ее нижележащими слоями происходит непрерывный обмен теплом. Передача тепла в почву осуществляется главным образом за счет молекулярной теплопроводности.
Нагревание и охлаждение почвы в основном зависят от ее теплофизических характеристик: теплоемкости и теплопроводности.
Теплоемкость — количество тепла, необходимое для повышения температуры почвы на 1 °С. Различают удельную и объемную теплоемкость.
Удельной теплоемкостью (С уд ) называют количество тепла, необходимое для нагревания 1 кг почвы на 1 °С.
Объемной теплоемкостью (С об ) называют количество тепла, необходимое для нагревания 1 м3 почвы на 1° С.
Способность почвы передавать тепло от слоя к слою называют теплопроводностью .
Мерой теплопроводности почвы служит коэффициент теплопроводности , который численно равен количеству тепла, Дж, проходящего за 1 с через основание столба почвы сечением 1 м² и высотой 1 м.
Коэффициент теплопроводности почвы зависит главным образом от соотношения содержания в ней воздуха и воды .
Теплофизические характеристики почвы также зависят от её плотности . С уменьшением плотности теплоемкость и теплопроводность сухих почв снижаются. Поэтому разрыхленные почвы в пахотном слое днем теплее, чем плотные, а ночью холоднее. Кроме того, разрыхленная почва имеет большую удельную поверхность, чем плотная, и поэтому днем поглощает больше радиации, а ночью интенсивнее излучает тепло.
Измерение температуры и глубины промерзания почвы
Для измерения температуры почвы применяют жидкостные (ртутные, спиртовые, толуоловые), термоэлектрические, электротермометры сопротивления и деформационные термометры.
Срочный термометр ТМ-3, ртутный, используют для измерения температуры поверхности почвы в данный момент (срок).
Максимальный термометр ТМ-1, ртутный, служит для измерения наивысшей температуры поверхности за период между сроками наблюдений.
Максимальный термометр отличается от срочного тем, что в канал капилляра непосредственно около резервуара входит тонкий штифтик, впаянный в дно резервуара. В результате этого в месте сужения происходит разрыв ртути, и таким образом фиксируется максимальное значение температуры за данный промежуток времени.
Минимальный термометр ТМ-2, спиртовой, применяют для измерения самой низкой температуры поверхности почвы за период между сроками наблюдений. Особенность устройства этого термометра заключается в том, что внутрь капилляра закладывается маленький из темного стекла штифтик. При понижении температуры поверхностная пленка мениска движется в сторону резервуара и перемещает за собой штифтик. При повышении температуры спирт, расширяясь, свободно обтекает штифтик. Последний остается на месте, указывая удаленным от резервуара концом минимальную температуру между сроками наблюдений.
Коленчатые термометры (Савинова) ТМ-5, ртутные, предназначены для измерения температуры почвы в теплый период на глубинах 5, 10, 15 и 20 см.
Термометр-щуп АМ-6, толуоловый, используют для походных измерений температуры почвы на глубинах 3. 40 см.
Транзисторный электротермометр ТЭТ-2 применяют для измерения температуры пахотного слоя в теплый период. Им можно измерять и температуру в буртах корнеплодов, картофеля, в зерновой массе в засеках.
Трость агронома ПИТТ-1 предназначена для измерения температуры пахотного слоя и замера глубины вспашки. Принцип его действия основан на измерении омического сопротивления в зависимости от температуры.
Вытяжные термометры ТПВ-50, ртутные, предназначены для измерений температуры почвы на глубинах 20. 320 см в течение года. Их можно также использовать в хозяйствах для измерения температуры в буртах, силосных ямах и т. п.
В последнее время получили развитие методы бесконтактного определения температуры поверхности почвы со спутников, самолетов и вертолетов, позволяющие получать осредненные значения температуры для значительных участков земной поверхности.
Мерзлотомер АМ-21 применяют для измерения глубины промерзания почвы. Этот прибор состоит из эбонитовой трубки, на верхней части которой нанесены деления в сантиметрах для определения высоты снежного покрова. В эту трубку помещают резиновую трубку с делениями через 1 см, заполненную дистиллированной водой.
Температуру по Международной практической шкале измеряют в градусах Цельсия (°С). Градус по этой шкале составляет 1/100 интервала между точками таяния льда (0 °С) и кипения воды (100 °С).
Значение температуры почвы для растений
Одним из важнейших факторов жизни растения является температура почвы. Прорастание семян, развитие корневой системы, жизнедеятельность почвенной микрофлоры, усвоение корнями продуктов минерального питания и др. в большой степени зависят от температуры почвы. С повышением температуры почвы все эти процессы активизируются. Значительное понижение температуры почвы приводит к гибели посевов озимых зерновых культур, многолетних трав и плодовых деревьев.
Семена большинства сельскохозяйственных культур в средней полосе прорастают при температуре 3. 5 °С, а такие, как рис, хлопчатник и др., требуют значительно более высоких температур — 13. 15 °С.
С повышением температуры почвы до оптимальной скорость прорастания семян возрастает, что обусловливает сокращение продолжительности периода от посева до появления всходов.
Температурный режим почвы непосредственно влияет на скорость роста корневой системы. При пониженных и повышенных температурах показатели роста ухудшаются.
После появления всходов температура почвы не теряет своего значения для растений. Они лучше растут и развиваются, если их корни находятся в среде с несколько пониженной (на 5. 10 °С) температурой по сравнению с надземными органами.
Температура почвы оказывает большое влияние на жизнедеятельность микроорганизмов и, следовательно, на обеспеченность растений элементами минерального питания, скорость разложения органического вещества, синтез гуминовых веществ и т. д.
Температурный режим определяет накопление подвижных питательных веществ в почве. Воздействуя на скорость движения воды и растворимых солей, температура влияет на темпы поступления питательных веществ в растения из почвы и внесенных удобрений. При невысоких температурах (8. 10 °С) снижается, например, поступление в корни и передвижение из корней в надземные органы азота, ослабляется его расход на образование органических азотных соединений. При более низких температурах (5. 6 °С и ниже) поглощение корнями азота и фосфора резко уменьшается. Снижается при этом и поглощение калия.
Тесно связаны с температурным режимом почвы также распространение и вредоносность болезней и вредителей сельскохозяйственных растений. У ряда теплолюбивых культур (кукуруза, хлопчатник) болезни проростков и повреждение семян плесенью проявляются при низких температурах (в холодные вёсны), когда термические условия неблагоприятны для растений.
Вредители растений, личинки которых находятся в почве, в зависимости от температуры могут принести больший или меньший вред.
Источник
Температура почвы и воздуха. Тепловой режим почв
Популярные материалы
Today’s:
Температура почвы и воздуха. Тепловой режим почв
Теплово́й режи́м почв — совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так различают суточный и годовой тепловой режимы). Основным показателем теплового режима является температура почвы (на разных глубинах почвенного профиля). Она зависит от климата, рельефа, растительного и снежного покрова, тепловых свойств почвы.
Тепловой режим обусловлен преимущественно радиационным балансом , который зависит от соотношения энергии солнечной радиации , поглощенной почвой, и теплового излучения. Некоторое значение в теплообмене имеют экзо- и эндотермические реакции, протекающие в почве при процессах химического, физико-химического и биохимического характера, а также внутренняя тепловая энергия Земли. Однако два последних фактора оказывают незначительное влияние на термический режим почвы. Количество тепла, приходящее изнутри земного шара к поверхности почвы, составляет всего 55 кал (230 Дж)/см² в год.
Радиационный баланс изменяется в зависимости от широты местности и времени года. В тундре он равен 10-20 ккал (42-84 кДж)/см², в южной тайге — 30-40 (126—167), в черноземной зоне — 30-50 (126—209), а в тропиках превышает 75 ккал (314 кДж)/см² в год.
И величина радиационного баланса, и дальнейшее преобразование фактически поступившего в почву тепла теснейшим образом связаны с тепловыми свойствами почвы: теплоемкостью и теплопроводностью. Однако наиболее крупные изменения в тепловом режиме почв определяются различиями общеклиматических условий. чаще всего о тепловом режиме судят по её температурному режиму. Температурный режим графически изображается в виде термоизоплет — кривых, соединяющих точки одинаковых температур.
Температурный режим почв следует за температурным режимом приземного слоя, но отстает от него. Средние годовые температуры почвы возрастают с севера на юг и с востока на запад. В пределах России и сопредельных государств среднегодовая температура почвы изменяется в пределах от −12 до +20°С. Выделяются 2 области — положительных и отрицательных среднегодовых температур почвы на глубине 20 см. Геоизотерма 0°С проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см в основном совпадает с областью распространения многолетнемерзлых пород.
Типы температурного режима почв — по классификации В. Н. Димо выделяются следующие Т. т. р. п.:
Как определить температуру почвы для посадки. Все о температуре почвы
Разные культуры можно высаживать дедовским способом: в одно и то же время каждый год. Однако климат меняется, соответственно, и температура почвы становится другой. Каждому растению для развития требуются свои условия, и первое на что надо обращать внимание – это состояние почвы.
В нашей статье объясним подробно, когда семя готово прорасти в земле и как узнать, что пора заняться посадкой; что понадобится для измерения температуры почвы и как быть, если нет нужных приборов под рукой; по каким народным приметам можно ориентироваться, что пришло время высаживать растения.
Тепловые характеристики почвы
Температура почвы очень важна для посадки, поскольку от этого показателя зависит поступление влаги и минерального питания к корням, рост и дыхание растения. Зимой культуры не высаживают именно потому, что в мороз перестают происходить процессы почвообразования. В прогретой до определенного показателя почвенной среде вновь начинается передвижение воды, возобновляют свою деятельность микробы и так далее. На температуру почвы влияют географическое положение местности и высота над уровнем моря, также имеют значение и свойства самого грунта: его механический состав, состояние влажности, другие свойства.
Глинистая почва при влажном климате летом будет не такой теплой, как почва с легким механическим составом, а вот в зимний период песчаная земля промерзнет сильнее, нежели более связные почвы. Увлажненная земля летом холоднее, чем сухая. Структурный грунт за счет лучшего воздухообмена быстрее прогреется весной, чем бесструктурный. Температура наружного слоя земли всегда более высокая по сравнению с корнеобитаемым слоем.
Температура почвы на глубине 10 см. Геотермальные теплонасосные системы теплоснабжения и эффективность их применения в климатических условиях России
Г. П. Васильев , научный руководитель ОАО «ИНСОЛАР-ИНВЕСТ»
В отличие от «прямого» использования высокопотенциального геотермального тепла (гидротермальных ресурсов) использование грунта поверхностных слоев Земли как источника низкопотенциальной тепловой энергии для геотермальных теплонасосных систем теплоснабжения (ГТСТ) возможно практически повсеместно. В настоящее время в мире это одно из наиболее динамично развивающихся направлений использования нетрадиционных возобновляемых источников энергии.
Грунт поверхностных слоев Земли фактически является тепловым аккумулятором неограниченной мощности. Тепловой режим грунта формируется под действием двух основных факторов – падающей на поверхность солнечной радиации и потока радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15–20 м.
Тепловой режим слоев грунта, расположенных ниже этой глубины («нейтральной зоны»), формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата (рис. 1). С увеличением глубины температура грунта также увеличивается в соответствии с геотермическим градиентом (примерно 3 °С на каждые 100 м). Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. Как правило, эта величина составляет 0,05–0,12 Вт/м 2 .
При эксплуатации ГТСТ грунтовый массив, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта (системы теплосбора), вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно. При этом в капиллярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые, прежде всего, связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. При наличии в толще грунтового массива температурного градиента молекулы водяного пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков, а также грунтовые воды.
При какой температуре воздуха почва прогреется до 10 градусов. Узнайте температуру вашей почвы
Вряд ли чтение прогноза погоды в местной газете отнимет у вас много времени: песчаная почва — 32 °C; глинистая почва — 27 °C… Температура почвы изменяется также, как и температура воздуха. Различие в одном: температура почвы не может меняться с той же интенсивностью, как температура воздуха. Наверное одна часть вашего сада прогревается больше (или меньше), чем другая, в зависимости от ее местоположения, химического и физического состава почвы.Сначала давайте выясним, как температура почвы влияет на результаты ваших посевов .
Приведем некоторые примеры:
- Прорастание семян зависит от степени прогрева почвы, так же и от степени прогрева воздуха.
- Посадка самых ранних культур, как только почва достаточно прогрелась весной, позволяет по истечении периода вегетации посадить на то же место поздние культуры.
- Мульчирование или выращивание культур в защищенном грунте позволяет измерять температуру почвы так, как это нужно вам.
- Мелкие животные типа кроликов выбирают для своих нор в саду только те места, где температура поверхности почвы более высокая, потому-что это защитит их от зимних морозов.
- Вам необходимо научиться спасать растения от повреждения низкими температурами.
- Вы можете помогать полезным бактериям почвы, если знаете, при какой температуре почвы условия для их жизнедеятельности оптимальны.
Люди, которые занимаются земледелием по органическому методу, хорошо знают, что их почва – живая, она является домом для миллионов полезных бактерий. Для наилучшего осуществления своей работы бактерии требуют особых условий по теплу, влажности и доступности почвенного воздуха.
Эти условия имеются только в верхнем (культурном) слое почвы; их легче достигнуть на супесчаных почвах, чем на глинистых, где влажность слишком высока и всегда имеет место недостаток кислорода.
Согласно Т. Бэдфорду Франклину, автору «Климата в миниатюре», «поля кукурузы желтеют, особенно в областях с глинистыми почвами, когда холод и сушь восточных ветров охлаждают почву весной, — это происходит от того, что в холодной почве бактерии производят слишком мало нитратов для того, чтобы почвы могли дать урожай; только при наступлении более теплого периода бактерии начинают активно работать – ярко-зеленый цвет возвращается к кукурузе.
Как определить температуру почвы по температуре воздуха. Расчёт температуры грунта на заданной глубине
Часто при проектированиидля моделирования температурных полей и для других расчётов необходимо узнать температуру грунта на заданной глубине.
Температуру грунта на глубине измеряют с помощью вытяжных почвенно- глубинных термометров. Это плановые исследования, которые регулярно проводят метеорологические станции. Данные исследований служат основой для климатических атласов и нормативной документации.
Для получения температуры грунта на заданной глубине можно попробовать, например, два простых способа. Оба способа заключаются в использовании справочной литературы:
- Для приближённого определения температуры можно использовать документ ЦПИ-22. «Переходы железных дорог трубопроводами». Здесь в рамках методики теплотехнического расчёта трубопроводов приводится таблица 1, где для определённых климатических районов приводятся величины температур грунта в зависимости от глубины измерения. Эту таблицу я привожу здесь ниже.
- Таблица температур грунта на различных глубинах из источника «в помощь работнику газовой промышленности» еще времён СССР
Нормативные глубины промерзания для некоторых городов:
Глубина промерзания грунта зависит от типа грунта:
Можно конечно попробовать рассчитать температуру грунта, например, по методике, изложенной в книге С.Н.Шорин «Теплопередача» М.1952. На стр.115. Но такой расчёт весьма сложный и не всегда оправдан.
Я думаю, что самый простой вариант, это воспользоваться вышеуказанными справочными данными, а затем интерполировать.
Самый надёжный вариант для точных расчётов с использованием температур грунта — воспользоваться данными метеорологических служб. На базе метеорологических служб работают некоторые онлайн справочники. Например, http://www.atlas-yakutia.ru/.
Здесь достаточно выбрать населённый пункт, тип грунта и можно получить температурную карту грунта или её данные в табличной форме. В принципе, удобно, но похоже этот ресурс платный.
Если Вы знаете ещё способы определения температуры грунта на заданной глубине, то, пожалуйста, пишите комментарии.
Источник