презентация Тепловые свойства почвы
Определение влияния теплового режима на интенсивность происходящих в почве биологических, химических, физических и биохимических процессов, на рост и развитие растений. Характеристика агротехнических приемов для регулирования теплового режима почв.
Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»
Рубрика | Биология и естествознание |
Вид | презентация |
Язык | русский |
Дата добавления | 10.01.2017 |
Размер файла | 1,2 M |
Подобные документы
Факторы формирования теплового режима грунта. Характерные особенности теплового режима систем сбора тепла грунта как объекта проектирования тепловых насосов грунт-вода. Понятие периода покоя у растений, его виды и признаки окончания. Сущность фитоценоза.
контрольная работа [20,7 K], добавлен 10.09.2010
Характеристика микробиологических и физических стимуляторов и их роль в жизнедеятельности растений. Биологические особенности подсолнечника, характеристика семян сорта «Пионер». Определение влияния стимуляторов на прорастание, рост и развитие семян.
курсовая работа [172,8 K], добавлен 13.09.2015
Характер и направления процессов, происходящих в глубинах Мирового океана, их глобальном изменении окружающей среды. Циркуляция углерода за счет физических и химических, биологических процессов. Модель глобального круговорота углекислого газа в воде.
реферат [107,2 K], добавлен 14.12.2014
Тепловой режим местообитаний и растительного покрова. Влияние экстремальных температур на рост и развитие растений. Температурные параметры цветения и плодоношения, прорастания семян. Термопериодизм и фенологические особенности действия теплового фактора.
презентация [250,5 K], добавлен 19.07.2015
Изучение физико-химических и биологических процессов почвообразования, пространственно-временной организации почв. Методы определения микробной биомассы почвы. Оценка содержания микробной биомассы и газопродукционной активности чернозема разных экосистем.
отчет по практике [3,6 M], добавлен 16.05.2016
Клеточные основы роста растений. Рост тканей в зависимости от её специфичности. Процесс превращения эмбриональной клетки в специализированную (дифференциация). Основные части побега. Особенность роста листа однодольных растений. Морфогенез корня.
курсовая работа [90,0 K], добавлен 23.04.2015
Индивидуальное развитие организма от зиготы до естественной смерти. Процесс необратимого новообразования структурных элементов, сопровождающийся увеличением массы и размеров организма. Влияние экологических факторов на рост и формообразование растений.
курсовая работа [96,0 K], добавлен 05.06.2011
Источник
Исследовательская работа по физике с презентацией «Влияние влаги на тепловые свойства почвы»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Выбранный для просмотра документ . ﭨ? . ?? ⥯. ??⢠ . docx
Государственное профессиональное образовательное учреждение
«Осинниковский политехнический техникум»
«Влияние влаги на тепловые свойства почвы»
Автор: Н.А. Колченко, группа ПР-19.4(1 курс)
Научный руководитель: О.К. Калинина, преподаватель
1.Физические характеристики тепловых свойств почвы……………. 3
2. Зависимость теплофизических свойств почвы от её влажности……..6
3. Практическая часть
3.1 Исследование зависимости скорости прогревания почвы от
влажности на садовом участке летом …………………………………. 9
3.2 Исследование зависимости скорости прогревания
почвы от влажности (в помещении)……………………………………..9
3.3 Исследование зависимости скорости прогревания
почвы от влажности (в помещении)…………………………………….10
3.4 Исследование зависимости скорости прогревания влажной
Цель работы: рассмотреть влияние влаги на тепловые свойства почвы
Гипотеза: влажная почва прогревается быстрее, чем сухая.
1) Изучить теоретический материал по рассматриваемой теме;
2) Спланировать и провести опыты по рассматриваемой теме;
3) Сравнить результаты опытов с теоретическим материалом и сделать обоснованные выводы.
Методы исследования: работа с литературой и интернет-ресурсами, проведение экспериментов.
В школе на уроках физики при изучении тепловых процессов часто рассматривается вопрос: «Какая почва летом прогревается быстрее – сухая или влажная?» И принято на него отвечать: «Влажная, поскольку её теплопроводность выше из-за наличия в ней воды».
Например, в сборнике задач по физике для основной школы под редакцией Орлова есть вопрос: «Почему земля прогревается быстрее после дождя, а не до него?» В ответах дано указание: «Влажная почва имеет большую теплопроводность». [2, с.382]
Но ведь на самом деле ответ на этот вопрос гораздо шире. В реальности на прогревание почвы влияет несколько факторов: теплопроводность, испарение, теплоёмкость, цвет. Какие же факторы оказывают решающее действие на скорость прогревания почвы? Попытаемся в этом разобраться.
1. Физические характеристики тепловых свойств почвы
Тепловой режим почвы включает в себя процессы поступления, переноса, накопления и отдачи тепла. Основным показателем теплового режима почвы является её температура, которая определяется притоком солнечной радиации и тепловыми свойствами самой почвы.[5]
Тепловые свойства почвы характеризуются следующими основными величинами:
Альбедо – количество солнечной радиации, отраженное поверхностью почвы по отношению к общей солнечной радиации, достигающей поверхности почвы, выраженное в %. Чем меньше альбедо, тем больше поглощает почва солнечной радиации.
Обычно различают удельную и объёмную теплоёмкости грунта. Удельная теплоёмкость численно равна количеству теплоты, необходимого для нагревания единицы массы вещества на один градус. Объёмная теплоёмкость численно равна количеству теплоты, необходимого для нагревания единицы объёма грунта на один градус. Ниже приведена таблица теплоёмкости составных частей почвы.
Таблица 1. Теплоёмкости составных частей почвы
Теплопроводность грунта характеризует его способность проводить тепло.
Основной характеристикой теплопроводности является коэффициент теплопроводности (λ). Коэффициент теплопроводности численно равен количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). Ниже приведена таблица теплопроводности составных частей почвы.
Таблица 2. Теплопроводность составных частей почвы
Температуропроводность (коэффициент температуропроводности( k )) характеризует скорость изменения температуры вещества в нестационарных тепловых процессах. Эта величина характеризует способность среды выравнивать свою температуру, которая определяется не только теплопроводностью среды, но и ее объемной теплоемкостью.
Коэффициент теплопроводности численно равен повышению температуры, которое произойдет в единице объема почвы при поступлении в нее тепла, численно равного ее теплопроводности:
λ — коэффициент теплопроводности, С v – объёмная теплоёмкость.
2. Зависимость теплофизических свойств почвы от её влажности
Представим почву, как мельчайшие частички, между которыми в сухой почве находится воздух, а во влажной – вода. И на основе этой модели будем анализировать изменение теплофизических свойств почвы при её увлажнении.
При рассмотрении таблицы 1 можно сделать вывод, что вода в почве увеличивает её теплоёмкость примерно в 4 раза по сравнению с сухой (с вод = 4,19 Дж/(г·ºС), с возд = 1,01 Дж/(г·ºС) . Увеличение теплоёмкости влажной почвы должно способствовать более медленному прогреванию почвы и более медленному её остыванию.
При рассмотрении таблицы 2 можно сделать вывод, что содержание воды в почве увеличивает её теплопроводность по сравнению с сухой примерно в 25 раз (λ вод =0,005866 Дж/(см·с·ºС), λ возд =0,000210 Дж/(см·с·ºС).
Следовательно, увеличение теплопроводности будет способствовать более быстрому прогреванию влажной почвы и более быстрому её остыванию.
Температуропроводность почвы характеризует результирующее действие теплоёмкости почвы и её теплопроводности.
Проанализируем график изменения зависимости коэффициента температуропроводности от влажности почвы, полученный экспериментально при помощи термостата (рис.1). [3]
Как видно из графика, зависимость коэффициента температуропроводности от влажности различна для разных типов почв.
Лугово-серозёмные почвы имеют наименьшее содержание глинистых частиц, поэтому вода в этой почве быстрее заполняет пространство между частичками земли, и вследствие этого температуропроводность в такой почве с ростом влажности увеличивается быстрее. В пойменно-луговых почвах глинистых частиц содержится много, поэтому их температуропроводность меньше и с ростом влажности она увеличивается незначительно.[3]
Если почва только влажная, вода между частицами земли удерживается большой капиллярной силой, вследствие чего затрудняется её циркуляция, и она заметно не влияет на распределении теплоты почве. И поэтому слегка влажная почва по температуропроводности близка к сухой почве. [6] При дальнейшем увеличении влажности вода заполняет пространства между частичками воды и вытесняет воздух, что улучшает её температуропроводность, как это видно из графика. Но когда почва становится настолько влажная, что вода в её порах может циркулировать, то её температуропроводность уменьшается. Это может быть объяснено тем, что при нагревании сверху в верхних слоях почвы прогревающаяся вода, как менее плотная, стремится остаться на поверхности, а не опускаться вглубь почвы.
При увлажнении почвы её цвет становится темнее, что увеличивает её способность поглощать тепловое излучение. Уменьшение альбедо влажной почвы должно способствовать её более быстрому прогреванию, чем сухой.
Увлажнение почвы всегда связано с процессом испарения. Испарение воды происходит как с поверхности почвы так и из полостей между её отдельными структурами. Процесс испарения протекает с поглощением энергии и на него затрачивается значительное количество теплоты. Количественно испарение характеризуется скоростью испарения — массой воды, испарившейся с единицы поверхности за единицу времени.
Испарение влаги из почвы зависит от её структурного и механического состава. Например, песчаные почвы испаряют меньше, чем глинистые, и эта разница тем больше, чем крупнее частицы песка. А при диаметре песчинок более 2 мм испарения практически не происходит. [4 ] Кроме того, скорость испарения влаги из почвы зависит от её окраски, уплотнённости, неровности поверхности, температуры и влажности воздуха, ветра.
Процесс испарения влаги из почвы способствует её охлаждению и, следовательно, замедлению её прогревания.
Таким образом, из рассмотрения зависимости теплофизических свойств от её влажности можно сделать вывод: утверждать однозначно, что влажная почва прогревается быстрее, чем сухая, основываясь только на увеличении её теплопроводности, нельзя. Хотя температуропроводность почвы с ростом влажности увеличивается, но гораздо меньше, чем теплопроводность. Причём для разных типов почв эта зависимость различна. А с учётом испарения и уменьшения альбедо очень трудно однозначно ответить на вопрос: «Какая почва прогревается летом быстрее, сухая или влажная?». Не существует какой-то абстрактной почвы, на прогревание которой влияет только увеличение её теплопроводности.
В общем случае прогревание почвы зависит от её теплоёмкости, теплопроводности, температуропроводности, процесса испарения влаги, от её альбедо. В свою очередь эти величины зависят от типа и структуры почвы, от состояния её поверхности, от температуры окружающей среды, влажности воздуха и скорости ветра.
При рассмотрении скорости прогревания почвы в природе, а не в лабораторных условиях, обязательно надо охарактеризовать условия, при которых происходит процесс прогревания.
3. Практическая часть
3.1 Исследование зависимости скорости прогревания почвы от влажности на садовом участке летом (июль)
Оборудование: два комнатных термометра, почва рыхлая глинистая с перегноем
Участок земли разделялся перегородкой. По разные стороны перегородки делались две ямки глубиной 5 см. Вечером в них помещали термометры, показывающие одинаковую температуру и закапывали. Один из участков поливали из лейки водой, набранной заранее. В 12 часов дня термометры откапывали и смотрели их показания. Опыт проводили три раза. Результаты опыта приведены в таблице (3).
Таблица 3. Результаты опыта по исследованию влияния влажности воздуха на прогревание почвы на открытом воздухе.
Вывод из опыта 1: Не выявлено, что влажная почва прогревается быстрее, чем сухая. Наоборот, в большинстве случаев прогрев сухой земли был больше.
3.2 Исследование зависимости скорости прогревания почвы от влажности (в помещении).
Применяли почву для выращивания цветов (по структуре рыхлая, слегка влажная, состоит из очень мелких частиц, цвет чёрный)
Оборудование: лампа накаливания, термометры водный или комнатный, почва в пластмассовом контейнере.
Опыт проводили три раза.
Термометр закапывали в грунт на глубину 2-3 см и прогревали грунт в течение 1-2 часов. В третьем опыте контейнер с грузом обернули стекловатой, чтобы уменьшить теплообмен контейнера с окружающей средой. Результаты опытов представлены в таблице 4.
Таблица 4 . Результаты опыта по исследованию влияния влажности воздуха на прогревание рыхлой чёрной почвы в закрытом помещении.
Вывод из опыта: Как и в опыте 1 в большинстве случаев прогрелась быстрее сухая почва.
3.3 Исследование зависимости скорости прогревания почвы от влажности (в помещении)
Применяли почву, запасённую осенью (очень сухая, состоит из твёрдых крупных частиц, цвет серый).
Оборудование: лампа накаливания, термометры комнатный и лабораторный, почва в пластмассовом контейнере.
Опыт проводили один раз. Прогревание почвы длилось 2 часа. Кроме термометра, который закапывали в почву, применяли лабораторный термометр, который при измерении температуры втыкали в грунт. Результаты опыта представлены в таблице 5.
Источник