Состав почвы
Почва – это сложная динамическая система. Она состоит из минеральных и органических веществ. Минеральные компоненты поступают в почву, в первую очередь, из материнской породы , на которой она образовалась. Органические вещества появляются и развиваются благодаря живым организмам, населяющим почвенный покров. Взаимодействие минералов и органики создает сложный комплекс разных соединений.
В этом разделе мы расскажем, из чего состоит почва. Вы узнаете о ее фазах и их особенностях. Также вы прочитаете о минеральном и органическом составах покрова, их соотношении и характеристиках.
Фазы почвы
Прежде всего мы поговорим о фазах почвы.
Выделяют четыре основных части:
Все они взаимосвязаны и активно влияют друг на друга.
К твердой фазе относятся органические и минеральные вещества. Это частицы разного размера и формы, которые неплотно примыкают друг к другу (глыбы, обломочные породы, глина, песок, пыль и другие). Тем не менее, они создают твердый почвенный каркас, на котором размещаются другие части. Эта фаза определяет петрографический (гранулометрический) состав, структуру, сложение и пористость почвенного покрова.
Сама по себе тве р дая часть является малодинамичной системой. Она же самая объемная – занимает 45-60% покрова. С ней связаны многие физические, физико-химические и химические свойства материала.
Подробнее об этом читайте на нашей странице Твердая фаза почвы.
Жидкая часть – это вода и растворенные в ней соли. Данная фаза формируется из атмосферных осадков, грунтовых вод, конденсации водяных паров. Она составляет около 25% от всего объема почвенного покрова.
Эта фаза считается самой динамичной. Именно из нее растения усваивают питательные вещества. Ведь без достаточного количества влаги нормальное развитие флоры и почвенных микроорганизмов невозможно. Кроме того, жидкая фаза участвует в таких процессах как гумификация и минерализация органических остатков, выветривание, перемещение веществ внутри покрова и формирование почвенного профиля.
Вода является и терморегулирующим фактором. Она определяет расход тепла из почвы и растений вследствие испарения и транспирации. С влажностью покрова тесно связаны его физико-механические свойства (твердость , крошение, липкость и другие). Стоит отметить, что передвижение влаги в почве и по ее поверхности также влияет и на отрицательно сказывающиеся на плодородии процессы. Среди них эрозия и вынос из верхних слоев питательных элементов.
Подробнее об этом читайте на нашей странице Жидкая фаза почвы.
Газообразная часть – это почвенный воздух. Он занимает все поры в почве, не занятые водой.
Эта фаза, как и жидкая, является динамической. Она покрывает 20-25% от общего объема почвы. В отличие от атмосферного воздуха, почвенный беден на кислород. В нем много углекислот. Это объясняется деятельностью микроорганизмов и растений: чем их больше в почве, тем больше кислорода они потребляют и углекислого газа выделяют.
Также в составе почвенного воздуха постоянно присутствуют нелетучие органические соединения (углеводороды жирного и ароматического рядов, сложные альдегиды, спирты и другие). Они , пусть и в небольшом количестве, тоже образуются в процессе жизнедеятельности почвенных микроорганизмов. Эти вещества поглощаются корнями, способствуя росту растений и повышению их жизнедеятельности.
Подробнее об этом читайте на нашей странице Газообразная фаза почвы.
Все фазы взаимодействуют друг с другом, активно переходят из одной в другую. Это возможно благодаря деятельности живых организмов. Они являются четвертой, живой фазой почвенного покрова. К ней относятся растения, грибы, бактерии, простейшие, мелкие животные. Высокая активность этих организмов доказывает, что все естественные процессы, которые происходят в почве, прямо или косвенно являются биохимическими по своей природе.
Подробнее об этом читайте на нашей странице Живая фаза почвы.
Примерное соотношение всех фаз почвы показано на диаграмме ниже.
Следующее, о чем мы поговорим, – это химический состав почвенного покрова. Он представлен минеральными и органическими веществами. Они сконцентрированы в твердой и жидкой фазах. В синтезе химических соединений принимают активное участие живые организмы.
Минеральный состав почвы
Минеральные вещества составляют 80-90% от общего объема покрова. Они поступают в почву двумя путями – из материнской породы и при полном разложении живых организмов. Из горной по р оды в почву попадают первичные минералы. Они имеют кристаллическое строение и практически не усваиваются растениями. Вторичные минералы аморфные, способны набухать и задерживать воду. Именно они являются источником питательных элементов почвы.
В составе почвы содержатся практически все известные химические элементы. Процентное содержание основных вы найдете в таблице ниже (средние значения).
Основные химические элементы почвы | Процентное содержание (от общего числа всех химических элементов) |
Кислород (O) | 49% |
Кремний (Si) | 33% |
Алюминий (Al) | 7,13% |
Железо (Fe) | 3,8% |
Углерод (C) | 2% |
Кальций (Ca) | 1,37% |
Калий (K) | 1,36% |
Натрий (Na) | 0,63% |
Магний (Mg) | 0,6% |
Кроме того, около 1-3% составляют фосфор, марганец, хлор, азот, сера и микроэлементы (кобальт, фтор, йод, медь, цинк, молибден). Все элементы входят в состав оксидов, гидроксидов, растворимых и нерастворимых солей. Для роста и развития флоры наибольшее значение имеют калий, фосфор, азот, в меньшей мере – кальций и магний. Но в небольших количествах растениям требуются и другие элементы.
Первоисточником всех минералов в почве являются магматические породы. Они составляют 95% от общей толщи литосферы. На долю осадочных пород приходятся оставшиеся 5%. Метаморфические же причисляются к тем материалам , из которых они образовались. Поэтому здесь они в расчет не принимаются.
Подробно о влиянии горных пород на почву и процессы формирования почвенного покрова вы сможете узнать в нашей статье Почвообразующая порода как фактор почвообразования.
Химический состав почв находится в состоянии постоянного изменения. Это связано с непрерывностью процессов выветривания и почвообразования.
Органический состав почвы
Органические вещества составляют от 1-2% до 10-15% почвы. Они образуются при частичном разложении растений, животных и микроорганизмов. В состав почвы входят белки, углеводы, смолы, воски, лигнин, липиды и продукты их распада (спирты, аминокислоты, пептиды, моносахариды). Эти вещества составляют около 10% от всей органики, являются источником минералов и питательной средой для почвенной фауны, бактерий, грибов.
Скорость разложения растительных остатков зависит от содержащихся в них веществ. Так, древесина и хвоя содержат много лигнина, смол и дубильных веществ, но мало белков. Их разложение идет медленно. Остатки же бобовых трав, богатые белками, разлагаются быстро.
Основную часть почвенной органики (80-90%) составляют гуминовые вещества. Они и определяют плодородие грунта.
В группу входят:
- Гуминовые кислоты
Это вещества темного цвета. Они образуют нерастворимые соли с железом и алюминием. Гуминовые кислоты способны поглощать и задерживать в верхних слоях почвы воду и питательные элементы , затем постепенно их высвобождать. Они участвуют в превращении химических соединений в доступную для растений форму. Эти кислоты играют главную роль в формировании структуры почвы и ее плодородия. - Фульвокислоты
Это растворимые вещества желтого цвета. Они быстро вымываются в нижние горизонты, плохо задерживают влагу и минералы, подкисляют почву. - Гумины
Это инертные вещества, связывающие минералы. Они не участвуют в почвообразовании.
Помимо соединений, органические остатки всегда содержат некоторый объем зольных элементов. Их количество и состав варьируются в зависимости от вида организмов и условий среды их обитания. В состав золы входят калий, кальций, магний, кремний, фосфор, сера, железо и многие другие элементы, содержащиеся в незначительных количествах. Очень низкая зольность характерна для древесины. Большое количество зольных элементов содержат остатки травянистой растительности.
Знание минерального и органического состава почвы и ее фаз помогает лучше разобраться в свойствах материала, его применении. Отсюда также становится понятно, какими способами можно улучшить плодородие почвенного покрова. Об этом мы у же писали в нашей статье Плодородность почвы: как ее сохранить и повысить. Возможно вам также будет полезна наша статья о кислотности почв. В ней подробно рассказано, как можно регулировать такой показатель как кислотность почвенного покрова, делать почву более кислой или щелочной.
Источник
Твердая фаза почвы химический состав
Глава 3. МИНЕРАЛЬНАЯ ФАЗА ПОЧВЫ И ЕЁ СОСТАВ
§1. Химический и минералогический состав почвы
Почва состоит из четырех фаз: твердой, жидкой, газообразной и живой (рис. 3). Твердая часть в свою очередь подразделяется на минеральную и органическую часть и составляет 50 % от общего объема почвы. В гумусовых горизонтах на долю минеральной части приходится 87 – 98 %, органической – только 2 – 13 %, в более глубоких доля минеральной части возрастает до 99 –100 %.
Поскольку почва есть продукт изменения горной породы, то она наследует в общих чертах химический и минералогический состав этой породы. В состав почвы входят все химические элементы периодической таблицы. Основу твердой части составляют: О (47,0 %), Si (33,0 %), Al (7,13 %), Fe (3,8 %), Ca (1,37 %), K (1,36 %), Н (1 %), Na и Mg (по 0,63 %), на остальные элементы приходится около 4 %, из них на С приходится 0,023 %, на N2 – 0,002 %, на Р – 0,081 %, на S – 0,085 %.
Химические элементы и их соединения образуют минералы, а они в свою очередь объединяются в горные породы. Минералы – однородные по химическим свойствам природные тела с определенными физическими свойствами, образовавшиеся в земной коре при различных физико-химических процессах. Известно около 4000 минералов, но из них в состав горных пород входит около 50.
Минералы горных пород по химическому составу делятся на следующие классы:
1. Самородные элементы: минералы, находящиеся в свободном состоянии: золото, платина, серебро, из металлоидов – сера, графит, алмаз, составляющие менее0,1% массы земной коры, преимущественно редкие.
2. Сульфиды – соли сероводородной кислоты, составляющие 0,25% массы земной коры, в основном руды (пирит FeS2 или железный или серный колчедан, халькопирит CuFeS2, или медный колчедан, галенит PbS, или свинцовый блеск, киноварь HgS).
3. Галогениды – соли галоидноводородных кислот (HCl, HF), относятся к вторичным минералам, образующимся при осаждении из растворов (галит NaCl или каменная соль, сильвин KCl, флюорит CaF2, или плавиковыйшпат).
4. Оксиды и гидроксиды – широко распространенные породообразующие минералы, играющие важную роль в геологических процессах (кварц SiO2 – самый распространенный породообразующий минерал 65 % в земной коре, халцедон SiO2, опал SiO2•nH2O, илигидроксид кремния, магнетит F3O4, или магнитный железняк, гематит Fe2O3 – красный железняк, лимонит 2Fe2O3•3H2O, или бурый железняк, корунд Al2O3, боксит Al2O3•2H2O, пиролюзит MnO2, или марганцевая руда).
5. Карбонаты – соли угольной кислоты (кальцит CaCO3, или известковый шпат, магнезит MgCO3, доломит CaMg(CO3)2, сидерит FeCO3, или железный шпат).
6. Сульфаты – соли серной кислоты (гипс CaSO4•2H2O, мирабилит Na2SO4•10H2O, или глауберова соль).
8. Нитраты – соли азотной кислоты (натриевая селитра NaNO3, калиевая селитра KNO3).
9. Силикаты и алюмосиликаты – самые распространенные в природе минералы, они составляют 95 % массы земной коры (полевые шпаты – ортоклаз K(AlSi3O8), слюды – мусковит KАl2[AlSi3О10], или бесцветная слюда, биотитK(Mg,Fe)3[Si3Al10](OH)2),или черная слюда).
10. Органические соединения – это углеводородные соединения, образовавшиеся из отмерших остатков биоты (нефть, ископаемые угли, янтарь).
По происхождению минералы делятся на первичные, или магматические, образовавшиеся в недрах Земли при затвердевании магмы в определенных температурах и давлении, и вторичные, или экзогенные, претерпевшие химические изменения, из которых формируются рыхлые осадочные породы. Наиболее распространенными первичными минералами являются кварц, полевые шпаты, слюды, преобладающие в крупных фракциях почвы. От количества первичных минералов зависят физические свойства почв, и они являются резервным источником зольных элементов питания растений, в результате их видоизменения образуются вторичные минералы. Вторичными минералами являются минералы простых солей, минералы оксидов и гидроксидов, глинистые минералы. Минералы простых солей (кальцит, магнезит, доломит, гипс и др.) определяют качественный и количественный состав засоления почв. Минералы оксидов и гидроксидов благодаря своей огромной поверхности поглощают много фосфора, делают его малодоступным растениям. Глинистые минералы (монтмориллонит, каолинит, гидрослюды и др.) преобладают в тонкодисперсных фракциях, в сочетании с гумусовыми кислотами способствуют улучшению водно-физических свойств почв, являются источниками элементов минерального питания для растений, обусловливают поглотительную способность почв.
§2. Гранулометрический состав почвы
Твердая фаза почвы состоит из частиц различной величины, которые называются механическими элементами и могут быть органическими, минеральными и органо-минеральными. Соотношение частиц разного диаметра, выраженное в процентах, называется гранулометрическим (механическим) составом почвы. В почве соотношение частиц разного диаметра зависит в значительной мере от того, на какой материнской породе она формируется и очень мало меняется в процессе почвообразования. Так, кислые, богатые кварцем породы дают много крупного песчаного материала, элювий основных, богатых легко выветривающимися минералами пород (известняк) дает много тонкодисперсных частиц.
Свойства механических элементов зависят от их размеров. Близкие по размерам элементарные частицы объединяются во фракции. Группировка частиц по размерам во фракции называется классификацией гранулометрических элементов. Наиболее широко применяется классификация, разработанная Н.А.Качинским (табл.1).
Несмотря на некоторую условность границ фракций, в целом данная классификация отражает реально существующие различия в свойствах частиц разного диаметра, что в свою очередь определяет свойства почвы в зависимости от преобладания той или иной фракции в составе почвы.
Камни и гравий представлены обломками горных пород и минералов, большое содержание этих фракций придает почвам неблагоприятные физические свойства – провальную водопроницаемость, отсутствие водоподъемной способности и низкую влагоёмкость, затрудняет использование сельскохозяйственных машин и орудий, является механическим препятствием для роста и развития растений. В малом количестве рыхлят почву.
Песчаные фракции состоят из обломков первичных минералов с преобладанием кварца, имеют высокую водопроницаемость, слабое набухание, непластичны. Однако в отличие от гравия обладают некоторой влагоемкостью и капиллярностью, поэтому на природных песках возможно выращивание сельскохозяйственных растений.
Пыль крупная по минералогическому составу и некоторым физическим свойствам мало отличается от песка, непластична, слабо набухает и обладает невысокой влагоемкостью.
Пыль средняя и мелкая состоит из первичных и вторичных минералов. В связи с этим она способна к коагуляции и структурообразоваиию, обладает поглотительной способностью, обогащена гумусовыми веществами, имеет повышенную пластичность, связность и водоудерживающую способность. Однако почвы с высоким содержанием этих фракций имеют такие неблагоприятные свойства, как низкая водопроницаемость, липкость, высокая набухаемость. Такие почвы содержат много недоступной для растений воды.
Илистая фракция состоит преимущественно из высокодисперсных вторичных минералов, имеет большое значение в плодородии почв, обладает высокой поглотительной способностью, содержит много гумусовых веществ, элементов минерального питания, активно участвует в структурообразовании.
На практике часто упрощают классификацию Н.А.Качинского и подразделяют все элементы на крупнозем (скелет или каменистая часть почвы > 1 мм) и мелкозем ( 80 %.
В Республике Беларусь, где преобладают песчаные и супесчаные почвы (рис.4), учитывают каждый процент глины, классификация почв по механическому составу несколько иная (табл. 2).
Различные по гранулометрическому составу почвы значительно отличаются по содержанию элементов питания, водным, воздушным и тепловым свойствам и по сопротивляемости обработке делятся на легкие и тяжелые.
Легкие почвы – песчаные и супесчаные – легко обрабатываются, весной быстрее прогреваются, полевые работы на них можно проводить раньше. К отрицательным свойствам песчаных и супесчаных почв относятся невысокое содержание гумуса и элементов питания, низкая влагоемкость и поглотительная способность. Эти почвы считают бедными и сухими.
Классификация почв Беларуси по гранулометрическому составу
Содержание физической глины (в % от веса почвы)
Для повышения плодородия легких почв необходимо применять органические и минеральные удобрения, возделывание бобовых для запахивания в качестве удобрений – эффективная мера повышения их плодородия. Иногда применяют глинование. Тяжелые почвы – глинистые и тяжелосуглинистые – содержат много элементов питания, но отдают их с трудом, имеют плохие водно-физические свойства. Во влажном состоянии они вязкие, липкие, при высыхании становятся твердыми, тяжело обрабатываются. Для повышения плодородия тяжелых почв необходимо улучшать их структуру путем систематического внесения органических удобрений. Среднесуглинистые и легкосуглинистые почвы сочетают достоинства легких и тяжелых почв и обладают наиболее благоприятными водно-воздушными, питательными, тепловыми свойствами.
Вместе с тем следует учитывать, что в различных климатических условиях значение одного и того же гранулометрического состава проявляется по-разному. В северных областях, где короткое лето и недостаток тепла, легкие почвы ценятся за способность быстро прогреваться, что позволяет раньше провести посев и увеличить продолжительность вегетационного периода. В районах засушливого климата предпочтительнее почвы тяжелые при условии их оструктуривания. Различные сельскохозяйственные культуры также неодинаково относятся к гранулометрическому составу почв. Так, люпин, сераделла, сорго, картофель, кукуруза, гречиха, просо – предпочитают легкие почвы. Пшеница, ячмень, свекла капуста дают устойчивые урожаи на среднесуглинистых почвах, а овес – даже на тяжелосуглинистых и глинистых.
Механический состав почв можно определить и непосредственно в поле. Перед собственно определением механического состава небольшой образец почвы смачивается водой и размешивается до консистенции густого теста – вода из почвы не отжимается, но почва блестит и мажется. Раскатывается на ладони в шнур и сворачивается в колечко. Толщина шнура около 3 мм, а диаметр кольца около 3 см. По признакам, приведенным на рис. 5, определяется гранулометрический состав.
Рис. 5. Мокрый способ определения механического состава почв в поле
Гранулометрический состав имеет большое значение для почвообразовательного процесса и влияет на следующие свойства почв: 1) водопроницаемость и скорость фильтрации воды; 2) водоподъемную силу; 3) влагоёмкость; 4) аэрацию (воздухообеспеченность); 5) набухание и усадку; 6) тепловые свойства; 7) структурность; 8) способность накопления гумуса; 9) запасы питательных элементов и их доступность растениям; 10) затраты энергии на обработку.
Знание гранулометрического состава почв позволяет определить оптимальные сроки сельскохозяйственных работ, дозы и сроки внесения удобрений и весь комплекс мероприятий по рациональному использованию и охране почв.
Источник