Меню

Удобрения как загрязнители пищевых продуктов

Удобрения как загрязнители пищевых продуктов

Загрязнения пищевых продуктов веществами, применяемыми в растениеводстве

Остатки сельскохозяйственных ядохимикатов представляют наиболее значительную группу загрязнителей, так как присутствуют почти во всех пищевых продуктах. В эту группу загрязнителей входят пестициды (бактериоциды, фунгициды, инсектициды, гербициды и др.), удобрения, регуляторы роста растений, средства против прорастания, средства, ускоряющие созревание плодов. Рассмотрим основные из них.

Пестициды. Пестициды — вещества различной химической природы, применяемые в сельском хозяйстве для защиты культурных растений от сорняков, вредителей и болезней, т. е. химические средства защиты растений. Мировое производство пестицидов (в пересчете на активные вещества) составляет более 2 млн т в год, причем эта цифра непрерывно растет. В настоящее время в мировой практике используют около 10 тыс. наименований пестицидных препаратов на основе 1500

действующих веществ, которые относятся к различным химическим группам. Наиболее распространены следующие: хлорорганические, фосфорорганические, карбаматы (производные карбаминовой кислоты), ртутьорганические, синтетические пиретроиды и медьсодержащие фунгициды.

С гигиенических позиций принята следующая классификация пестицидов:

— по токсичности при однократном поступлении через желудочно-ки-шечный тракт пестициды делятся на сильнодействующие ядовитые вещества (ЛД50 до 50 мг/кг), высокотоксичные (ЛД,0 от 50 до 200 мг/кг), среднетоксичные (ЛД50 от 200 до 1000 мг/кг), малотоксичные (ЛД50 более 1000 мг/кг);

— по кумулятивным свойствам пестициды делятся на вещества, обладающие сверхкумуляцией (коэффициент кумуляции1 меньше 1), выраженной кумуляцией (коэффициент кумуляции от 1 до 3), умеренной кумуляцией (коэффициент кумуляции от 3 до 5), слабовыраженной кумуляцией (коэффициент кумуляции больше 5);

— по стойкости пестициды делятся на очень стойкие (время разложения на нетоксичные компоненты свыше 2 лет), стойкие (от 0,5 до 1 года), умеренно стойкие (от 1 до 6 месяцев), малостойкие (1 месяц).

Нарушения гигиенических норм хранения, транспортировки и применения пестицидов, низкая культура работы с ними приводят к их накоплению в кормах, продовольственном сырье и пищевых продуктах, а способность аккумулироваться и передаваться по пищевым цепям — к их широкому распространению и негативному влиянию на здоровье человека. Применение пестицидов и их роль в борьбе с различными вредителями в повышении урожайности сельскохозяйственных культур, их влиянии на окружающую среду и здоровье человека вызывают неоднозначные оценки различных специалистов.

Интересна судьба открытого в 1939 г. швейцарцем Паулем Мюллером инсектицида [2,2,2-трихлор-1,1-бис(пара-хлорфенил)этана], — (С1С 6 Н 4 ) 2 СНСС1 3 , известного как ДДТ. Препарат токсичен, ЛД50 — 200 мг/кг, ПДК в воздухе — 0,1 мг/м3, ПДК в воде — 0,1 мг/л; допустимые остатки в почве — 1,0 мг/кг, в овощах и фруктах — 0,5 мг/кг, в других продуктах не допускается.

ДДТ сыграл огромную роль в борьбе с малярией, и в 1948 г. Пауль Мюллер был удостоин Нобелевской премии в области медицины за свое открытие. Однако уже начиная с 1950 г. начали поступать сообщения о токсических свойствах ДДТ и реальной угрозе с его стороны для здоро-вья человека. Благодаря своей стойкости и летучести (период обращения вокруг Земли составлял всего 3-4 недели), ДДТ оказался одним из первых глобальных загрязнителей. Он был обнаружен на всех континентах, в том числе и в Антарктиде. Его способность аккумулироваться и передаваться по пищевым цепям привела к тому, что он был обнаружен в жировом слое пингвинов и в грудном молоке женщин. Все это способствовало тому, что уже в 60-х гг. в большинстве стран препарат был запрещен (в СССР с 1970 г.).

В настоящее время споры о применении или же полном запрете пестицидов продолжаются. Ученые разных областей науки (химики, аграрии, медики) — каждый со своих позиций, приводят убедительные доводы как за, так и против. Очевидно, что лишь общие усилия помогут найти правильное решение этой сложнейшей проблемы.

С 1986 г. в нашей стране действует автоматизированный мониторинг, обеспечивающий информацию об уровнях пестицидов и других хлорорга-нических соединений в продуктах питания. В частности, при мониторинге определяются остаточные количества 154 пестицидов, относящиеся к 45 группам в 262 видах пищевых продуктах, принадлежащих к 23 классам. Результаты мониторинга последних лет показывают возрастание общего содержания пестицидов в продуктах растительного и животного происхождения. Особенно это касается таких продуктов, как картофель, репчатый лук, капуста, помидоры, огурцы, морковь, свекла, яблоки, виноград, пшеница, ячмень, рыба прудов и водохранилищ, молоко. В них обнаруживается наиболее широкий спектр пестицидов. Причем повышение допустимого уровня содержания пестицидов в 5 и более раз следует понимать как экстремальное загрязнение, а оно наблюдается, к сожалению, в широком ассортименте продуктов питания.

Данные мониторинга свидетельствуют о реальной опасности комбинированного воздействия на организм человека множества высоко токсичных пестицидов; позволяют оценить степень такой нагрузки и определить необходимость первоочередных мер по испытанию и профилактике.

Очевидно, что полностью отказаться от применения пестицидов невозможно, поэтому очень важен контроль за производством и применением пестицидов со стороны различных ведомств и организаций, а также информация населения о неблагоприятном воздействии этих соединений на организм человека. Однако в решении проблемы, связанной с негативным влиянием пестицидов на организм человека, существуют ( вой объективные трудности. Пестициды, поступающие в организм с пищевыми продуктами, подвергаются биотрансформации, и это затрудняет их обнаружение и осложняет раскрытие механизмов воздействия на человека. Кроме того, промежуточные продукты биотрансформации

ксенобиотиков бывают более токсичны, чем первоначальный ксенобиотик, и, в связи с этим, огромное значение приобретает опасность отдаленных последствий.

Нитраты, нитриты, нитрозамины. Нитраты широко распространены в природе, они являются нормальными метаболитами любого живого организма, как растительного, так и животного, даже в организме человека в сутки образуется и используется в обменных процессах более 100 мг нитратов.

Почему же говорят об опасности нитратов? При потреблении в повышенном количестве нитраты (N03“) в пищеварительном тракте частично восстанавливаются до нитритов (N02

). Механизм токсического действия нитритов в организме заключается в их взаимодействии с гемоглобином крови и в образовании метгемоглобина, неспособного связывать и переносить кислород. 1 мг нитрита натрия (NaN02) может перевести в метгемоглобин около 2000 мг гемоглобина.

Согласно данным ФАО/ВОЗ, ДСД нитрита составляет 0,2 мг/кг массы тела, исключая грудных детей. Острая интоксикация отмечается при одноразовой дозе с 200-300 мг, летальный исход при 300-2500 мг. Токсичность нитритов будет зависеть от пищевого рациона, индивидуальных особенностей организма, в частности от активности фермента мет-гемоглобинредуктазы, способного восстанавливать метгемоглобин в гемоглобин. Хроническое воздействие нитритов приводит к снижению в организме витаминов А, Е, С, Вр В6, что в свою очередь сказывается на снижении устойчивости организма к воздействию различных негативных факторов, в том числе и онкогенных. Нитраты, как отмечалось выше, сами по себе не обладают выраженной токсичностью, однако одноразовый прием 1—4 г нитратов вызывает у людей острое отравление, а доза 8-14 г может оказаться смертельной. ДСД, в пересчете на нитрат ион, составляет 5 мг/кг массы тела, ПДК нитратов в питьевой воде — 45 мг/л.

Кроме того, из нитритов в присутствии различных аминов могут образовываться N-нитрозамины.

В зависимости от природы радикала могут образовываться разнообразные нитрозоамины, 80% из которых обладают канцерогенным, мута-генным, тератогенным действием, причем канцерогенное действие этих соединений определяющее.

Нитрозоамины могут образовываться в окружающей среде, так, с суточным рационом человек получает примерно 1 мкг нитрозосоеди-нений, с питьевой водой — 0,01 мкг, с вдыхаемым воздухом — 0,3 мкг, но эти значения могут значительно колебаться в зависимости от степени загрязнения окружающей среды. В результате технологической обработки сырья, полуфабрикатов (интенсивная термическая обработка, копчение, соление, длительное хранение и т. п.), образуется широкий спектр нитрозосоединений. Кроме этого, нитрозоамины образуются в организме человека в результате эндогенного синтеза из предшественников (нитраты, нитриты).

Читайте также:  Подкормка помидор раствором борной кислоты

Наибольшее распространение получили такие нитрозосоедине-пия как N-нитрозодиметиламин (НДМА), N-нитрозодиэтиламин (НДЭА), N-нитрозодипропиламин (НДПА), N-нитрозодибутиламин (НДБА), N-нитрозопиперидин (НПиП), N-нитрозопирролидин (НПиР).

Основными источниками поступления нитратов и нитритов в организм человека являются, в первую очередь, растительные продукты. И поскольку нитраты, как отмечалось выше, являются нормальным продуктом обмена азота в растениях, нетрудно предположить, что их содержание зависит от следующих факторов:

— индивидуальные особенности растений; существуют так называемые «растения накопители нитратов», это, в первую очередь, листовые овощи, а также корнеплоды, например свекла и др.;

— степень зрелости плодов; недозрелые овощи, картофель, а также овощи ранних сроков созревания могут содержать нитратов больше, чем достигшие нормальной уборочной зрелости;

— возрастающее и часто бесконтрольное применение азотистых удобрений (имеется в виду неправильная дозировка и сроки внесения удобрений);

— использование некоторых гербицидов, например 2,4-D (дихлор-феноксиуксусная кислота), и дефицит молибдена в почве нарушают обмен веществ в растениях, что приводит к накоплению нитратов.

Помимо растений, источниками нитратов и нитритов для человека являются мясные продукты, а также колбасы, рыба, сыры, в которые добавляют нитрит натрия или калия в качестве пищевой добавки — как консервант или для сохранения привычной окраски мясопродуктов, т. к. образующийся при этом NO-миоглобин сохраняет красную окраску даже после тепловой денатурации, что существенно улучшает внешний вид и товарные качества мясопродуктов.

Ниже представлены данные института питания РАМН [Рыбальский М. Г., Савицкий А. И. и др., 1994] по содержанию нитратов (мг/кг) в продовольственном сырье и пищевых продуктах:

Источник

Безопасность продовольственного сырья, продуктов питания и пищевых добавок

Исследование связи между количеством вносимых в почву удобрений и их содержанием в продуктах питания. Яды пептидной природы, содержащиеся в грибах (амантин). Загрязнители продовольственного сырья, аккумулирующиеся и передающиеся по пищевым цепям.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 11.01.2014
Размер файла 52,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Безопасность продовольственного сырья, продуктов питания и пищевых добавок

продовольственный пищевой яд пептидный гриб

1. Связь между количеством вносимых в почву удобрений и их содержанием в продуктах питания

2. Антиалиментарные факторы питания. Характеристика, безопасность

3. Яды пептидной природы, содержащиеся в грибах (б-амантин)

4. Загрязнители продовольственного сырья, аккумулирующиеся и передающиеся по пищевым цепям

5. Сущность процессов детоксикации ксенобиотиков в организме человека

Список используемой литературы

1. Связь между количеством вносимых в почву удобрений и их содержанием в продуктах питания

Применение удобрений в сельском хозяйстве имеет важное значение для управления плодородием почв, повышения урожайности и пищевой ценности сельскохозяйственных культур. Нарушение агрохимических и гигиенических регламентов применения удобрений приводит к чрезмерному накоплению их в почве, растениях, они загрязняют продовольственное сырьё и пищевые продукты, оказывая тем самым токсическое действие на организм человека.

В зависимости от химического состава различают удобрения азотные, фосфорные, калийные, известковые, микроудобрения, бактериальные, комплексные и другие. Условно их можно подразделить на минеральные и органические. Необходимость в удобрениях объясняется тем, что естественный круговорот азота, фосфора, калия, других питательных для растений соединений не может восполнить потери этих биоэлементов, уносимых из почвы с урожаем.

Азотные удобрения. В зависимости от формы соединения азота существуют: аммиачные, аммонийные, нитратные, аммонийно-нитратные, амидные.

Азот играет важную роль в жизнедеятельности растений в качестве компонента белков, нуклеиновых кислот, витаминов и других, биологически активных веществ.

Нитратная форма удобрений в допустимых дозах способствует образованию в растениях аскорбиновой кислоты и кальция, аммонийная-фосфора.

Фосфорные удобрения — различаются количеством оксида фосфора P2O5 . Один из самых распространённых видов — суперфосфат. Накопление в почве и растениях большого количества P2O5 тормозит протекающие в них биологические процессы.

Калийные удобрения — калийная соль (хлористый калий) и другие. Калий не входит в органический состав веществ растений, но он активно участвует в углеводном и белковом обменах.

Микроудобрения — необходимы для обогащения почвы микроэлементами. Наибольшее распространение получили борные, молибденовые, медные, марганцевые, цинковые, кобальтовые.

Комплексные удобрения — содержат комплекс питательных для растений элементов (фосфорно-азотные и фосфорно-калийные и др.).

Органические удобрения — играют важную роль в улучшении плодородия почв с низким содержанием гумуса, а также тяжёлых почв с непрочной структурой.

Нарушение гигиенических правил использования удобрений, особенно неорганической природы, приводит к накоплению большого количества отдельных элементов и их соединений в почве и сельскохозяйственном сырье, создаёт проблему загрязнения пищевой продукции. Типичным примером может служить проблема нитратов, нитритов и нитрозаминов при неконтролируемом применении азотных удобрений.

Определённую перспективу имеют микробные биоудобрения, получаемые при помощи биологической очистки сточных вод животноводческих комплексов. Путём аэробной переработки производят две фракции удобрений: твёрдую — осадок первичных отстойников — и биомассу микроорганизмов.

Одним из новых источников удобрений могут быть отходы флотации угля (ОФУ). Каждый год их накапливается огромное количество. ОФУ имеет сложный состав: в них сдержатся минеральные вещества, около 2% примесей (мелкодисперсный уголь, смолы, масла, флотореагенты), обнаружены тяжёлые металлы, полициклические ароматические углеводороды, нитрозосоединения. При неправильном сборе и хранении они могут стать источником загрязнения воздушного бассейна, подземных и поверхностных водоисточников.

При оценке возможности использования отходов в качестве удобрений ведущим компонентом ОФУ, оказывающим вредное воздействие, определён бенз(а)пирен (БП). Проведение комплексных гигиенических исследований показало, что предельно допустимой дозой внесения ОФУ в почву является 3 кг на 1 кг, или 10т\га. При таком варианте ни один из неблагоприятных компонентов отходов, в том числе БП, не поступает в сельскохозяйственные растения, атмосферный воздух и грунтовые воды в количествах, превышающих ПДК, что исключает загрязнение пищевых продуктов, делает ОФУ ценным и безопасным удобрением.

2. Антиалиментарные факторы питания. Характеристика, безопасность

По мнению академика А.А. Покровского, к антиалиментарным факторам относят соединения, не обладающие общей токсичностью, но обладающие способностью избирательно ухудшать или блокировать усвоение нуриентов. Этот термин распространяется только на вещества природного происхождения, являющиеся составными частями натуральных продуктов питания. Представители этой группы веществ рассматриваются как своеобразные антагонисты обычных пищевых веществ. В указанную группу входят антиферменты, антивитамины, деминирализующие вещества, другие соединения.

Антиферменты (ингибиторы протеиназ) — вещества белковой природы, блокирующие активность ферментов. Содержатся в сырых бобовых, яичном белке, ячмене, других продуктах растительного и животного происхождения, не подвергавшихся тепловой обработке. Изучено воздействие антиферментов на пищеварительные ферменты, в частности, на пепсин, трипсин,б-амилазу. Выявлено, что трипсин человека находится в катионной форме и поэтому нечувствителен к антипротеазе бобовых.

В настоящее время изучены несколько десятков природных ингибиторов протеиназ, их первичная структура и механизм действия. Трипсиновые ингибиоры, в зависимости от природы содержащейся в них диаминомонокарбоновой кислоты, подразделяются на два типа: аргининовый и лизиновый. К аргининовому типу относят: ингибиторы пшеницы, кукурузы, ржи, ячменя и другие: к лизиновому — овомукоиды яиц индейки, пингвина, утки, а также ингибиторы, выделенные из молозива коровы.

Читайте также:  Почва для ароидных со слабокислой или нейтральной реакцией рн 5 6

Механизм действия этих антиалиментарных веществ заключается в образовании стойких энзимингибиторных комплексов и подавлении активности главных протеолитических ферментов поджелудочной железы: трипсина, химотрипсина и эластазы. Результатом такой блокады является снижение усвоения белковых веществ рациона.

Рассматриваемые ингибиторы растительного происхождения характеризуются относительно высокой термической устойчивостью, что нехарактерно для белковых веществ. Нагревание сухих растительных продуктов, содержащих указанные ингибиторы, до 130° С или получасовое кипячение не приводит к существенному снижению их ингибирующих свойств. Полное разрушение соевого ингибитора трипсина достигается 20-минутным автоклавированием при 115°С или кипячением соевых бобов в течение 2-3ч. Ингибиторы животного происхождения более чувствительны к тепловому воздействию.

Отдельные ингибиторы ферментов могут играть в организме специфическую роль при определённых условиях и отдельных стадиях развития организма, что в целом определяет пути их следования. Тепловая обработка продовольственного сырья приводит к денатурации белковой молекулы антифермента, т.е. он влияет на пищеварение только при потреблении сырой пищи. Например, потребление сырых яиц в большом количестве может оказать отрицательное влияние на усвоение белковой части рациона.

Антивитамины. К антивитаминам относят две группы соединений:

— соединения, по механизму действия подобные антиметаболитам. Этот механизм направлен на конкурентные взаимоотношения между витаминами и антивитаминами;

— соединения, способные модифицировать витамины, уменьшить их биологическую активность и приводить к их разрушению.

Таким образом, антивитамины — это соединения различной природы, обладающие способностью, уменьшать или полностью ликвидировать специфический эффект витаминов, независимо от механизма их действия. Следовательно, к антивитаминам не относятся вещества, увеличивающие или уменьшающие их потребность.

Избыточное потребление продуктов, богатых лейцином, нарушает обмен триптофана, в результате блокируется образование триптофана ниацина (витамина РР) — одного из важнейших водорастворимых витаминов. Наряду с лейцином антивитамином ниацина являются индолилуксусная кислота и ацетилпиридин, содержащихся в кукурузе. Чрезмерное потребление продуктов, содержащих вышеуказанные соединения, может усиливать развитие пеллагры, обусловленной дефицитом ниацина.

В отношении аскорбиновой кислоты (витамина С) антивитаминными факторами являются окислительные ферменты — аскорбатоксидаза, полифенолоксидазы и другие. Особенно сильное влияние оказывает аскорбатоксидаза, содержащаяся в овощах, фруктах и ягодах. Она катализирует реакцию окисления аскорбиновой кислоты до дегидроаскорбиновой. Поэтому учёт активности аскорбатоксидазы имеет важное значение при решении ряда технологических вопросов, связанных с сохранением витаминов в пище. Содержание и активность аскорбатоксидазы в различных продуктах питания не одинаковы. Наибольшее её количество обнаружено в огурцах и кабачках, наименьшее — в моркови, свёкле, помидорах и др. разложение аскорбиновой кислоты под воздействием аскорбатоксидазы и хлорофилла происходит наиболее активно при измельчении рстительного сырья, когда нарушается целостность клетки и возникают благоприятные условия для взаимодействия фермента и субстрата. Смесь сырых измельчённых овощей за 6 ч хранения теряет более половины аскорбиновой кислоты. Поэтому рекомендуют пить свежевыжатые соки непосредственно после их изготовления или потреблять овощи, фрукты и ягоды в натуральном виде, избегая их измельчения и приготовления различных салатов.

Активность аскорбатоксидазы подавляется под влиянием флавоноидов 1-3 минутном прогревании сырья при 100° С, что необходимо учитывать в технологии и приготовлении пищевых продуктов и кулинарных изделий.

Для тиамина (витамина В1) антивитаминными факторами являются тиаминаза, содержащаяся в сырой рыбе, вещества с Р-витаминным действием — ортодифенолы, биофлавоноиды, основными источниками которых служат кофе и чай. Разрушающее действие на витамин В1 оказывает окситамин, образующийся при длительном кипячении ягод и фруктов.

Тиаминаза, в отличие от аскорбатоксидазы, «работает» внутри организма человека, создавая при определённых условиях дефицит тиамина. Потребление в пищу сырой рыбы и привычка жевать бетель у некоторых народностей приводят к развитию недостаточности витамина В1, потому что наибольшее количество тиаминазы обнаружено у пресноводных рыб, а у трески, наваги, бычков и ряда других морских рыб этот фермент полностью отсутсвует.

Тиаминазы могут содержаться в продуктах растительного и животного происхождения, обуславливая расщепление части тиамина в пищевых продуктах в процессе их изготовления и хранения.

Для пиридоксина (витамина В6) антагонистом является линатин, содержащийся в семени льна. Ингибиторы пиридоксалевых ферментов обнаружены в ряде других продуктов — в съедобных грибах, некоторых видах семян бобовых и др.

Избыточное потребление сырых яиц приводит к дефициту биотина (витамина Н), так как в яичном белке содержится фракция протеина — авидин, связывающий витамин в неусвояемое соединение. Тепловая обработка яиц вызывает денатурацию белка и лишает его антивитаминных свойств.

Сохраняемость ретинола (витамина А) снижается под воздействием перегретых либо гидрогенизированных жиров. Эти данные свидетельствуют о необходимости щадящей тепловой обработки жироёмких продуктов, содержащих ретинол.

Недостаточность токоферолов (витамина группы Е) образует под влиянием неизученных компонентов фасоли и сои при тепловой обработке, при повышенном потреблении полиненасыщенных жирных кислот , хотя последний фактор можно рассматривать с позиции веществ, повышающих потребность организма в витаминах.

Вещества, блокирующие усвоение или обмен аминокислот, влияют на аминокислоты, в основном на лизин, со стороны редуцирующих сахаров. Взаимодействие протекает в условиях жёсткого нагревания по реакции Майяра, поэтому щадящая тепловая обработка и оптимальное содержание в рационе источников редуцирующих сахаров обеспечивает хорошее усвоение незаменимых аминокислот.

Деминирализующие факторы (снижающие усвоение минеральных веществ). К ним относят щавелевую кислоту и её соли (оксалаты), фитин (инозитолгексафосфорная кислота) танины, некоторые балластные вещества и др.

Наиболее изучена в этом плане щавелевая кислота. Продукты с высоким содержанием щавелевой кислоты способны резко снижать утилизацию кальция путём образования нерастворимых в воде солей. Такое взаимодействие может служить причиной тяжёлых отравлений за счёт абсорбации кальция в тонком кишечнике.

Высокое содержание щавелевой кислоты отмечено в овощах, в среднем мг/100г: шпинат-1000, портулак-1300, ревень-800, щавель-500, красная свёкла-275. В остальных овощах и фруктах щавелевая кислота содержится в незначительных количествах. отмечено, что её пособность связывать кальций зависит от пропорции содержания в продукте кальция и оксалатов.

Фитин благодаря своему химическому строению легко образует труднорастворимые комплексы с ионами калция, магния, железа, цинка и меди. Этим объясняется его деминирализующий эффект — способность уменьшать адсорбцию металлов в кишечнике. Достаточно большое количества фитина содержится в злаковых и бобовых: в пшенице, фасоли, кукурузе — около 100мг/100г, причём основная часть — в наружном слое зерна. Высокий уровень в злаках не представляет особой опасности, так как содержащийся в зерне фермент способен расщиплять фитин. Полнота расщепления зависит от активности фермента, качества муки и технологии выпечки хлеба. Этот фермент работает при температуре до 70°С, максимум его активности при рН 5,0-5,5 и 55°С. Хлеб, выпеченный из рафинированной муки, в отличие от обычной муки практически не содержит фитина. В хлебе из ржаной муки его мал благодаря высокой активности фитазы. отмечено, что декальцинирующий эффект фитина тем выше, чем меньше соотношение кальция и фосфора в продукте и ниже обеспеченность организма витамином D.

Установлено, что усвояемость железа снижается в присутствии дубильных веществ чая, поскольку они образуют с ним хелатные соединения, которые не всасываются в тонком кишечнике. Такое воздействие дубильных веществ не распространяется на гемовое железо мяса, рыбы и яичного желтка. Неблагоприятное влияние дубильных и балластных соединений на усвояемость железа тормозится аскорбиновой кислотой, цистеином, кальцием, фосфором, что указывает на необходимость их совместного использования в рационе. Кофеин, содержащийся в кофе, активизирует выделение из организма кальция, магния, натрия, ряда других элементов, увеличивая тем самым потребность в них. Показано ингибирующее действие серосодержащих соединений на усвоение йода.

Читайте также:  Урожай это множественное число или нет

3. Яды пептидной природы, содержащиеся в грибах (б-амантин)

Яды пептидной формы — это яды растительного происхождения. Отравления амантином наступают при употреблении в пищу некоторых видов ядовитых грибов.

Бледная поганка (Amanita virosa) — смертельно ядовитый гриб из рода мухоморов, содержит токсин альфа-амантин. Особенная опасность гриба в длительном времени проявления симптомов отравления. Симптомы могут не проявляются на протяжении первых 6-24 часов, в течении которых, тем не менее, уже происходит отравление организма и нанесение ему непоправимого ущерба. После проявления симптомов какое-либо лечение, как правило, уже бесполезном. Мухомор красный (лат. Amanita muscaria) — гриб подвида мухоморов из обширного отряда агариковых. Крупный гриб, шляпка которого шириной от 8 до 20 см. Снаружи она ярко-красная, различной густоты цвета и усеяна белыми бородавками, остатками общего покрова, одевающего весь гриб на первых степенях развития. Пластинки с изнанки шляпки белые, пенёк того же цвета снабжён при основании вульвой, а выше кольцом. Обилен в лесах и перелесках и распространяется далеко на север.

Основной токсин бледной поганки — a-амантин связывается с РНК-полимеразой млекопитающих, ответственной за синтез информационной РНК, и угнетает ее. Тяжелые повреждения клеток и жировая дегенерация выявляются в печени, почках, поперечно-полосатых мышцах и головном мозге. Появлению признаков отравления предшествует латентный период длительностью 6-20 ч.

Проявления цитотоксического действия появляются внезапно и к ним относятся тяжелая тошнота, интенсивные боли в животе, кровавая рвота, кровавый понос и сердечно-сосудистый коллапс. Часто наблюдаются головная боль, спутанность сознания, кома или судороги. На 1-2-й день после употребления этих грибов появляются болезненная незначительная гепатомегалия, желтуха, гипоґликемия, дегидратация и олигурия или анурия. Пострадавший может умереть от острого некроза печени (желтая атрофия) в течение 4 дней. Около 50% всех случаев отравления заканчиваются смертью в течение 5-8 дней. Выздоровление происходит медленном.

Употребление других ядовитых грибов может вызвать симптомы со стороны желудочно-кишечного тракта, нарушение зрения, атаксию, дезориентацию, судороги, кому, лихорадку, гемолиз и метгемоґлобинемию.

Лечение больных с отравлением грибами зависит от вида грибов и характера признаков. Если доминируют парасимпатические симптомы, то внутримышечно вводят атропин в дозе 1-2 мг; введение атропина повторяют через каждые 30 мин до исчезновения этих симптомов. Следует тщательно поддерживать водно-электролитный баланс. В случае отравления цитотоксичными грибами лечение ґлавным образом симптоматическое.

Следует избегать развития гипоґликемии; большие количества углеводородов оказывают защитное действие в отношении печени. Возбуждение, судороги, боли, гипотония и лихорадка могут потребовать проведения симптоматической терапии. Гемосорбция, проведенная в ранние сроки, способствует удалению a-амантина из организма. a-Липоевая кислота и цитохром-С рекомендованы в качестве антидотов при отравлении a-амантином.

4. Загрязнители продовольственного сырья, аккумулирующиеся и передающиеся по пищевым цепям

Основные пути загрязнения продуктов питания и продовольственного сырья:

— использование неразрешённых красителей, консервантов, антиокислителей или применение разрешённых в повышенных дозах.

— применение новых, нетрадиционных технологий производства продуктов питания или отдельных пищевых веществ, в том числе полученных путём химического и микробиологического синтеза.

— загрязнение сельскохозяйственных культур и продуктов животноводства пестицидами, используемых для борьбы с вредителями растений и в ветеринарной практике для профилактики заболеваний животных.

— нарушение гигиенических правил использования удобрений (в растениеводстве), оросительных вод, твёрдых и жидких отходов промышленности и животноводства, коммунальных и других сточных вод, осадков очистных сооружений и т.д.

— использование в животноводстве и птицеводстве неразрешённых кормовых добавок, консервантов, стимуляторов роста, профилактических и лечебных медикаментов или применение разрешённых добавок и других соединений в повышенных дозах.

— миграция в продукты питания токсических веществ из пищевого оборудования, посуды, инвентаря, тары, упаковки вследствие использования неразрешённых полимерных, резиновых и металлических материалов.

— образование в пищевых продуктах эндогенных токсических соединений в процессе теплового воздействия (например кипячения, жарения, облучения) других способов технологической обработки.

— несоблюдение санитарных требований в технологии производства и хранения пищевых продуктов, что приводит к образованию бактериальных токсинов (микотоксинов, ботулотоксинов и др.).

— поступление в продукты питания токсических веществ, в том числе радионуклидов, из окружающей среды-атмосферного воздуха, почвы, водоёмов.

Наибольшую опасность с точки зрения распространенности и токсичности имеют следующие контоминанты:

Токсины микроорганизмов — относятся к числу наиболее опасных природных загрязнителей. Наиболее распространены в растительном сырье. Так, в поступающем по импорту арахисе обнаруживаются пфлотоксины до 26%, в кукурузе — до 2,8%, в ячмене — до 6%. Патулин, как правило, выявляется в продуктах переработки фруктов — в соках, фруктовых пюре и джемах, что связано с нарушением технологий и использованием нестандартного сырья.

Токсичные элементы (тяжёлые металлы) — основной источник загрязнения — угольная, металлургическая и химическая промышленность.

Антибиотики — получили распространение в результате нарушений их применения в ветеринарной практике. Остаточные количества антибиотиков обнаруживаются в 15-26% продукции животноводства и птицеводства. Проблема усугубляется тем, что методы контроля и нормативы разработаны только для немногих из нескольких десятков применяемых препаратов. Обращает внимание большой уровень загрязнения левомицетином — одним из более опасных антибиотиков.

Пестициды — накапливаются в продовольственном сырье и пищевых продуктах вследствие бесконтрольного использования химических средств защиты растений. Особую опасность представляет одновременное наличие нескольких пестицидов, уровень которых превышает ПДК.

Нитраты, нитриты, нитрозамины — проблема нитратов и нитритов связана с нерациональным применением азотистых удобрений и пестицидов, что приводит к накоплению указанных контоминантов, а также аминов и амидов, усилению процессов нитрозирования в объектах окружающей среды и организме человека и, как следствие этого, образованию высокотоксичных соединений — N-нитрозаминов.

По данным института питания РАМН, в настоящий момент N-нитрозамины встречаются практически во всех мясных, молочных и рыбных продуктах, при этом около 40% мясных и почти половина рыбных продуктов содержат их в концентрациях, превышающих гигиенические нормативы.

Диоксины и диоксиноподобные соединения — особо опасные хлорорганические контоминанты, основными источниками которых являются предприятия, производящие хлорную продукцию.

Полициклические ароматические углеводороды (ПАУ) — образуются в результате природных и техногенных процессов.

Радионуклиды — причиной загрязнения может быть небрежное обращение с природными и искусственными источниками.

Пищевые добавки — подсластители, ароматизаторы, красители, антиоксиданты, стабилизаторы и т.д., их применение должно регламентироваться нормативной документацией с наличием разрешения органов здравоохранения.

Существует проблема загрязнения продовольствия фузариотоксинами — дезоксиниваленолом (ДОН) и зеараленоном, которая обусловлена вспышками фузариоза зерна.

По результатам мониторинга, проводимого Институтом питания РАМН, определён перечень приоритетных загрязнителей, подлежащих контролю в различных группах продовольственного сырья и пищевых продуктах (таблица 1).

Группа пищевых продуктов

Зерно и зернопродукты

Микотоксины (афлотоксины: В1,зеараленон, вомитоксин)

Источник

Adblock
detector