Меню

Улучшение водно физических свойств почвы

III. Улучшение физических свойств почвы

III. Улучшение физических свойств почвы

Если имеется свободный выбор почвы для разведения садов и огородов, то вообще предпочитается суглинистая черноземная почва на юге, в черноземной полосе, и перегнойно-суглинистая почва в средних и северных губерниях (в нечерноземной полосе) с подпочвой, легко пропускающей воду; последнее обстоятельство особенно важно для плодовых деревьев в средних и северных губерниях, но менее важно для огородных и ягодных культур.

Если же, что часто случается, не имеется никакого выбора почвы, то приходится применяться к местным обстоятельствам и принять, к случае надобности, необходимые меры к улучшению физических свойств находящейся в распоряжении почвы, которая может быть песчаной, глинистой, торфяной или иловатой, с большею или меньшею примесью перегноя. Это суть главные почвы, с которыми обыкновенно приходится иметь дело. Значительное физическое улучшение почвы требует больших усилий и потому редко может быть выполнено в совершенстве.

1) Торфяно-болотные почвы. В СССР до сих пор мало возделываются, хотя они могут приносить хорошие урожаи, если участок так расположен, что отведение излишней сырости не встречает препятствий. Примером этого служат многие места в Ирландии, Голландии и северной Германии (Luneburger Haide), состоящие почти из одних органических веществ, с примесью песка. Торфяная почва требует для основательного улучшения значительной примеси минеральных веществ, как, например, глины, песка, песчаного и глинистого мергеля или извести. Способ сжигания дерновых пластов, где это не представляет опасности относительно подземных пожаров, применяемый к торфяникам, как вообще ко всем низменным и кислым почвам, также оказывает хорошее влияние. С этой целью режут весной плугом или лопатами дерн в пласты, толщиной в 2 вершка (9 см), поднимают их боком, прислоняя попарно друг к дружке в виде крыши, и перевертывают их через несколько дней, когда выставленная наружу поверхность высохнет. Когда все пласты почти совсем высохнут, их складывают в поле в небольшие кучки, на равном друг от друга расстоянии. Пласты, образующие эти кучи, кладутся горизонтально и должны иметь между собой промежуточные отверстия, а вся куча в середине – свободное пространство, куда кладется несколько сухого хворосту, щепок, соломы, сухой травы и т. п. для разведения огня. Когда кучи загорятся, то обкладывают их еще снаружи новыми пластами, особенно там, где выходит огонь, и продолжают это до тех нор, пока не останется ни одной дернины. Сжигать совершенно до золы дерн не следует; он должен только разрушиться, чтобы потом легко мог рассыпаться. Когда кучки достигнут этой степени спелости, то их разваливают, вследствие чего огонь сам собой гаснет. Остывшие кучи рассыпают по поверхности поля и заделывают как удобрение. Способ сжигания довольно дорог, но представляет зато действительное средство улучшения кислой почвы.

2) Известковая почва. Известковая почва, в виде глинистого мергеля, обыкновенно представляет собою плодородную и хорошего качества почву; на ней вообще отлично удается древесная растительность; песчаная же почва, содержащая известь, требует улучшения глиной; такие почвы, впрочем, довольно редко встречаются в СССР.

3) Железистая почва встречается часто и отличается красно-бурым цветом, зависящим от водной окиси железа Fe 2О 3, которая в этой степени окисления, даже в значительном количестве, не имеет вредного влияния на растительность, особенно на возвышенной глинистой почве. На низменных местах иногда встречается гидрат закиси железа зеленого цвета, которая вредна, даже, можно сказать, ядовита для всех культурных растений. Необходимое условие для улучшения такой почвы – основательная осушка, частое и глубокое разрыхление, для того, чтобы все ее части подвергались действию воздуха; при этом вредная закись, соединяясь с кислородом воздуха, превращается в безвредную окись. На низменной железистой, вполне окисленной почве, если она в прочих отношениях доброкачественна, хорошо удаются хмель и овощи.

4) Черноземная почва. Черноземная почва СССР, как в физическом, так и в химическом отношениях, считается одной из лучших и, следовательно, не требует особенных улучшений. Менее плодородны почвы сухих степей юго-востока СССР.

5) Солончаковая почва, или солончак, занимает значительные пространства в южных губерниях и представляет почву мало пригодную без мелиорации по причине примеси значительного количества солей. Эти почвы могут быть улучшены промывкой с быстрым удалением промывных вод.

6) Солонцовые почвы, встречающиеся в черноземной и особенно в пустынно-степной полосе, обладают на некоторой глубине очень плотным, летом отвердевающим в камень слоем. Но и эта почва может быть улучшена запахиванием соломистого навоза и гипсованием.

7) Скелетные почвы, состоящие из более или менее крупных обломков твердых горных пород с примесью незначительного количества мелкой земли, улучшаются только навозкою плодородной почвы; чтобы почву предохранить от размывания на крутых скатах, необходимо складывать поперек скатов дерновые или каменные стены, чтобы удержать почву на месте, как это делается при разведении виноградников и плодовых садов в гористых местах. На такие места почва часто наносится из отдаленных местностей, и эту работу находят настолько же выгодной, как и необходимой. Многие такие горные сады имеют почву, состоящую из одного щебня, подобно новому шоссе, но тем не менее плодовые деревья и особенно виноградники, при помощи небольшой поддержки землею и удобрением, растут прекрасно и дают отличные урожаи.

Замечательно то, что деревья удачно развиваются в одном почти горном щебне, с едва заметной примесью мелкой земли; это, однако, объясняется тем, что корневые мочки имеют способность, посредством выделения кисловатой жидкости, действовать разлагающим образом на горные породы и, таким образом, извлекать питательные вещества даже из твердых масс. Естественно, что разрушающее действие воздуха, воды и тепла главным образом подготовляет почву к заселению ее растительностью. Разумеется, особенно дорогое улучшение не окупится в северных полосах СССР, где климатические условия не допускают культуры растений, дающих соответствующие доходы, и где более удобная почва находится в изобилии. Но все-таки мы видели, с какими огромными усилиями финляндцы и швейцарцы превращают горные скалы в сады и огороды.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

5. Вес почвы

5. Вес почвы В почве, как теле пористом, приходится различать:а) объемный вес, т. е. вес единицы объема, напр., л, см – дециметра или метра, иб) удельный вес, т. е. отношение, показывающее во сколько раз твердые составные части почвы тяжелее одинакового объема воды при + 4 °C. В

6. Классификация почв на основании механических и физико-химических свойств

6. Классификация почв на основании механических и физико-химических свойств Смотря по содержанию в почве песка и глины, можно выделить следующие 7 классов почв.1) Очень тяжелая или глина содержит 50–5 % глины2) Тяжелая суглинистая 50–33) Суглинистая средняя 33–54) Суглинистая

Обработка почвы

Обработка почвы Подготовку почвы, как правило, начинают осенью, после уборки урожая. Перекапывают весь участок. Удаляют камни и корни растений, при этом пласты земли только переворачивают. В это время в глинистую почву желательно добавить песок, а в песчаную – глину.

Удобрение почвы

Удобрение почвы В почве, как правило, содержатся все необходимые для нормального развития и роста огородных культур микро– и макроэлементы. Но с каждым годом с урожаем овощей и бахчевых культур из почвы выносится значительное количество различных элементов. Восполнить

Требования к оптимизации свойств

Требования к оптимизации свойств Требования к оптимизации потребительских свойств минеральных удобрений могут быть сформулированы следующим образом. Ассортимент минеральных удобрений должен быть представлен комплексными (сложными и смешанными) удобрениями,

Читайте также:  Как сделать компост с байкалом

Заправка почвы

Заправка почвы При заправке почвы удобрение вносят в больших дозах и на большую глубину. Для усвоения растениями питательных веществ нужен непосредственный контакт очага удобрений с корнями. По отношению к однолетним растениям эта задача решается просто. Удобрение

Подготовка почвы

Подготовка почвы Земляника – многолетнее растение. Поэтому подготовка почвы перед посадкой оказывает очень большое влияние на урожайность земляники в течение всего периода ее жизни, тем более что внесение органических удобрений после посадки не дает нужного эффекта

Проращивание семян и улучшение всходов

Проращивание семян и улучшение всходов Проращивание твердокожих семянТвердокожие семена, как известно, отличаются очень медленной прорастаемостью, и нередко приходится прибегать к искусственным мерам, чтобы ускорить их всхожесть. Наиболее практикуемая с успехом из

Достоинства почв и их улучшение

Достоинства почв и их улучшение Почвы для сада и огородаКак улучшить тяжелую глинистую почву?Для улучшения глинистой почвы, настолько тяжелой, что она затрудняет перекопку, прилипая к лопате, рекомендуют добавлять дробленый кирпич. Мелко раздробленный кирпич

Сохранение вкуса и полезных свойств

Сохранение вкуса и полезных свойств Одними из самых вкусных и питательных грибов являются вешенки. Они универсальны в применении: их можно жарить, варить, тушить, мариновать, добавлять в салаты, солить, готовить как первое и второе блюда, добавлять в начинку пирогов, а

Источник

способ улучшения водно-физических свойств почв

Изобретение относится к области сельского хозяйства и почвоведения, а именно, к способам улучшения водно-физических свойств почв путем внесения в почву сильнонабухающих полимерных гидрогелей. Способ заключается в том, что в почву вводят порошок полимерного гидрогеля полиакриламида, модифицированного ионизирующим гамма-излучением до поглощенной дозы 3,0-7,0 кГр с последующей стабилизацией водой и сушкой при температуре 60-70°C, при этом дисперсные частицы полученного полимерного гидрогеля, имеющие показатели вязкоупругих свойств: модуль упругости 20,0-23,07 Па, динамическую вязкость 3000-3754 Па при скорости сдвига 2,0-2,6-10 -4 с -1 , при водопоглощении частиц до 1000 мл на 1 г полимера, вносят в почву в количестве 50-300 кг на 1 гектар. В состав порошка полимерного гидрогеля дополнительно вводят микроэлементы либо при стабилизации путем обработки полимера водным раствором микроудобрений, либо напылением порошка микроудобрений на стабилизированные частицы полимера. Технический результат — повышение влагоёмкости полимерного гидрогеля, повышение водоудерживающих свойств, улучшение воздухообмена, повышение водопрочности почвенных агрегатов при снижении количества полимерного гидрогеля на гектар земли, а также повышение урожайности растений. 1 з.п. ф-лы, 1 ил., 5 пр.

Формула изобретения

1. Способ улучшения водно-физических свойств почв путем внесения в почву порошка полимерного гидрогеля на основе акрилового полимера, отличающийся тем, что в качестве порошка полимерного гидрогеля используют полиакриламид, модифицированный ионизирующим гамма излучением до поглощенной дозы 3,0-7,0 кГр с последующей стабилизацией водой и сушкой при температуре 60-70°С, при этом дисперсные частицы полученного полимерного гидрогеля, имеющие показатели вязкоупругих свойств: модуль упругости 20,0-23,07 Па, динамическую вязкость 3000-3754 Па при скорости сдвига 2,0-2,6·10 -4 с -1 , при водопоглощении частиц до 1000 мл на 1 г полимера, вносят в почву в количестве 50-300 кг на 1 гектар.

2. Способ по п.1, отличающийся тем, что в состав порошка полимерного гидрогеля дополнительно вводят микроэлементы либо при стабилизации путем обработки полимера водным раствором микроудобрений, либо напылением порошка микроудобрений на стабилизированные частицы полимера.

Описание изобретения к патенту

Изобретение относится к области сельского хозяйства (с/х) и почвоведения, а именно к способам улучшения водно-физических свойств почв путем внесения в них сильнонабухающих полимерных гидрогелей (ПГГ).

В последние годы в связи с прогнозируемым глобальным изменением климата с интенсивным развитием новых химических технологий сформировалось самостоятельное крупное направление — разработка специализированных полимеров для агропромышленного комплекса. Внимание исследователей привлекает возможность использования нового класса синтетических полимерных гидрогелей (ПГГ) для решения проблем регулирования водно-физических свойств почв и для контролируемого выделения-поглощения воды и микроудобрений. Они способны многократно увеличивать свой объем в результате набухания, обладают высокой водосорбирующей способностью, но сами стабильны и не растворяются в воде. Полимерные материалы в большой степени могут становиться структурным элементом технологий сельскохозяйственного производства в недалеком будущем. Наряду с традиционными направлениями они все шире используются в сельскохозяйственных отраслях.

Наиболее перспективным в области использования полимерных синтетических гидрогелей для нужд сельского хозяйства является макромолекулярная система на основе высокосшитого акриламида для контролируемого выделения-поглощения воды и микроудобрений.

Известен способ улучшения водно-физических свойств почв за счет повышения водопрочности почвенной структуры путем внесения крилиумов — продуктов, полученных на основе метакриловой и акриловой кислот (Вершинин П.В. Почвенная структура и условия ее формирования. — М.: Издательство академии наук СССР, 1958, с.148 и 151).

Основными недостатками данного способа являются высокий расход реагента — более 500 кг/га, а почвенная структура характеризуется низкой водоудерживающей способностью (не более 50%).

Известен способ создания противофильтрационной завесы, в котором с целью повышения водонепроницаемости завесы обработку грунта проводят полиакриламидом, который используют в виде порошка (размер частиц 0,1-0,25 мм) с молекулярной массой (6-8)×10 6 (ТУ-6-105-39-01-252-78) с последующим орошением обработанного грунта (SU 1153001 A1, E022B 3/16, С09К 17/22, 30.04.1985). Полиакриламид по известному изобретению используют для повышения водонепроницаемости (уменьшения фильтрации) воды в гидротехнических сооружениях.

Известен способ создания водонепроницаемого экрана в дисперсных пористых средах, SU 1426067 A1, C09K 17/00, Е02В 3/16 20.07.1995, путем внесения в грунт на глубину 12-30 см в дозе 100-250 г/м 2 порошкообразного полимерного материала — водонерастворимого гидрогеля полиакриламида. После внесения порошка гидрогеля осуществляют увлажнение поверхности грунта из расчета 100 мм осадков или образование экрана происходит в естественных условиях за счет талых вод или атмосферных осадков.

Данные по водоудерживающей способности полимеров и водоустойчивости почвенной структуры в SU 1153001 A1 и в SU 1426067 A1 отсутствуют.

Известен влагонабухающий почвенный кондиционер для улучшения водного режима почвы, который содержит полимерный гидрогель на основе акрилового полимера и глинистый минерал в качестве наполнителя, в качестве глинистого минерала используют бентонитовую или палыгорскитовую глину в массовом соотношении гидрогель:глинистый минерал от 1:0,25 до 1:1,5, а гидрогель получают путем полимеризации акрилового мономера в водной среде в присутствии сшивающего агента -N,N -метилен-бис-акриламида — в количестве 0,025-0,15% от массы мономера в процессе перемешивания с глинистым минералом (RU 2189382 С2, С09К 17/40, 20.09.2002. Равновесная степень набухания известного кондиционера в воде составляет 640-720 г на 1 г кондиционера, а влагоемкость почвы при внесении кондиционера увеличивается на 60-90%.

Недостатком кондиционера является его достаточно низкая механическая прочность, кроме того, при набухании частицы кондиционера в присутствии глины слипаются и снижают водоудерживающую способность полимера, что ограничивает возможность его многократного использования в процессах сорбции-десорбции воды при выращивании с/х культур.

Задачей предлагаемого изобретения является создание способа улучшения водно-физических свойств различных видов почв за счет внесения в почву полимерного гидрогеля ПГГ на основе модифицированного полиакриламида.

Техническим результатом изобретения является повышение водно-физических свойств почв: повышение влагоемкости, повышение водоудерживающих свойств, улучшение воздухообмена, повышение водопрочности почвенных агрегатов при снижении количества ПГГ на гектар земли, а также повышение урожайности растений.

Технический результат достигается тем, что в способе улучшения водно-физических свойств почв, включающем внесение в почву порошка полимерного гидрогеля (ПГГ) на основе акрилового полимера, согласно изобретению в качестве порошка полимерного гидрогеля используют полиакриламид, модифицированный ионизирующим гамма-излучением до поглощенной дозы 3,0-7,0 кГр с последующей стабилизацией водой и сушкой при температуре 60-70°С, при этом дисперсные частицы полученного полимерного гидрогеля, имеющие показатели вязкоупругих свойств: модуль упругости 20,0-23,07 Па, динамическую вязкость 3000-3754 Па при скорости сдвига 2,0-2,6·10 -4 с -1 , при водопоглощении частиц до 1000 мл на 1 г полимера, вносят в почву в количестве 50-300 кг на 1 гектар.

Дополнительно в состав порошка ПГГ могут быть введены микроэлементы либо при стабилизации путем обработки полимера водным раствором микроудобрений, либо напылением порошка микроудобрений на стабилизированные частицы полимера.

Выбранная доза облучения порошкообразного полиакриламила 3,0-7,0 кГр (0,3-0,7 Мрад) является оптимальной для получения ПГГ с высокой внутренней пористостью, что повышает водопоглощение и сорбцию микроэлементов на поверхности ПГГ при сохранении высокой механической прочности частиц порошка ПГГ, размер которых составляет от 0,25 до 1 мм.

Облучение полиакриламида, его стабилизацию водой, сушку, обработку облученного и стабилизированного полиакриламида водным раствором микроудобрений, напыление порошка микроудобрений на частицы ПГГ проводят при атмосферных условиях.

Полученный полимерный гидрогель после облучения, последующей стабилизации водой и сушки представляет собой радиационносшитый гидрофильный полимерный материал в виде порошка, содержащий до 30 мас.% воды, не содержащий вредных сшивающих агентов, таких как соли хрома. Молекулярная структура сетки и наличие в ней ионогенных групп обеспечивают существенное равновесное набухание ПГГ, лежащее в интервале 300-3000 мл/г. Это ключевое качество ПГГ открывает возможность их использования как эффективных безопасных влагоабсорберов в различных задачах, требующих аккумуляции, связывания и отдачи воды или водных растворов, содержащих микроэлементы.

Кроме того, вода способствует тому, что свободные радикалы, накопившиеся при облучении в твердом полиакриламиде, приобретают подвижность и рекомбинируют, образуя сшивки , что позволяет сохранить в течение длительного времени эксплуатационные характеристики: повышенное влагопоглощение ПГГ до 1000 мл на 1 г полимера, модуль упругости 20,0-23,07 Па, динамическую вязкость 3000-3754 Па при скорости сдвига 2,0-2,6·10 -4 с -1 .

Показатели вязкоупругих свойств дисперсных частиц ПГГ были измерены с помощью высокочувствительного динамического реометра РеоСтресс (RheoStress).

При обработке ПГГ водным раствором микроудобрений, содержащим микроэлементы, полимер впитывает воду и остается порошкообразным, на поверхности частицах которого осаждаются микроэлементы в виде покрытий.

В качестве микроудобрений могут быть использованы все известные растворимые в воде удобрения, содержащие в незначительном количестве микроэлементы: бор, медь, молибден, азот, цинк, марганец, хром, кобальт, железо, магний, калий, фосфор, йод, натрий, кремний, литий.

Наносят микроудобрения преимущественно путем распыления водного раствора по поверхности полимера при перемешивании массы с последующей сушкой, чтобы избежать комкования частиц ПГГ.

Микроудобрения в виде порошка наносят на ПГГ методом напыления, опудривания, распыления, или методом кипящего слоя, или любым другим известным методом.

Указанная в формуле совокупность признаков способствует улучшению водно-физических свойств почв: влагоемкость почв повышается на 80-95%, повышаются водоудерживающие свойства, улучшается воздухообмен, повышается водопрочность почвенных агрегатов до 80-98% за счет усиления микрофазного расслоения при внесения полимера в количестве 50-300 кг на 1 гектар земли. Порошки (гранулы) гидрогеля улучшают качество земли: глинистые — становятся более сыпучими, а сыпучие — комковатыми.

Улучшение водно-физических свойств и структуры почв, в свою очередь, приводит к повышению потенциального плодородия почв и повышению урожайности растений.

Концентрация микроэлементов на поверхности ПГГ зависит от области использования ПГ в с/х, точнее от вида культур (овощи, зерновые, бобовые и пр.) и от почвы (кислые, подзолистые, глинистые и пр.), но, как правило, составляет не более 10 -1 мас.%. Такая низкая концентрация микроэлементов на поверхности ПГГ позволяет на несколько порядков снизить количество удобрений вносимых в почву обычным способом, при этом повышается усвояемость микроэлементов всеми видами культур и, как следствие, повышается их урожайность.

Гидрогель выдерживает широкий диапазон температур: от -40°С до +90°С. Он не токсичен для растений, почвенных организмов и грунтовых вод. По истечении срока годности полностью распадается на азот, углекислый газ и воду.

Общие принципы действия ПГГ на водный режим почвы и влагообеспеченность растений в том, что при внесении в почвенный корнеобитаемый слой, например, путем равномерного распределения, частицы ПГГ располагаются в порах, и при поступлении влаги набухают, обеспечивая тем самым повышение влагоудерживания по сравнению с необработанной почвой и благоприятные условия для развития растений.

В лабораторных экспериментах изучались:

— набухание ПГГ в дистиллированной воде и в минерализованном почвенном растворе;

— водоудерживающая способность почв (зависимость между давлением почвенной влаги и влажностью) до внесения ПГГ и смеси почвы с разным содержанием сухого гидрогеля (г/100 г почвы);

— устойчивость полимера к многократным циклам набухание-высушивание и промерзание-оттаивание ;

— возможность прорастания семян в набухшем гидрогеле и в почве с внесенным гидрогелем.

В результате проведенного исследования установлено, что 0,1 г ПГГ удерживает приблизительно около 30 мл дистиллированной воды, т.е. объем увеличивается в 300 раз, что является нижним пределом для полимеров такого типа.

В исследовании геля на набухание-высушивание установлено, что в зависимости от влажности и температуры воздуха в помещении, т.е. дефиците влажности воздуха, гель усыхает за 3-7 суток. Однако после добавления воды в количестве испарившейся гель полностью восстанавливает свои свойства по набуханию даже после нескольких циклов высушивания-набухания . В исследовании геля на промораживание-оттаивание установлено, что ПГГ не теряет свои свойства также в течение нескольких циклов. Ни в том, ни в другом случае максимально возможное количество циклов не установлено, т.к. деструкция молекулы не обнаружена.

Количественно оценить изменения водоудерживающей способности почв с внесенным гидрогелем и доступность аккумулированной влаги для корневых систем растений можно оценить по основной гидрофизической характеристике почв (ОГХ), что позволяет рассчитывать и принимать ряд агротехнологических решений по управлению продуктивностью посевов.

Определение водоустойчивости ПГГ проводят согласно методу Андрианова при воздействии на систему ультразвуком, рассчитывая водопрочность (водоустойчивость) по Качинскому (Качинский Н.А. Физика почвы. Ч 1. — М.: Высшая школа, 1965, с.309-312).

Определение водоудерживающей способности дерново-подзолистой супесчаной почвы проведено на прессе Ричардса. Зависимости между капиллярно-сорбционным давлением и влажностью почвенных образцов показаны графически. На фиг. представлена зависимость давления почвенной влаги от влажности почвы, где: 1 дерново-подзолистая почва (контроль); 2 — дерново-подзолистая почва с добавлением гидрогеля 0,1 г/100 г; 3 — дерново-подзолистая почва с добавлением гидрогеля 0,2 г/100 г.

Из анализа кривых водоудерживания, приведенных на фиг. видно, что в диапазоне изменений влажности почвы в пределах от 48 до 70% влага в почве с ПГГ находится в состоянии, доступном для растений. Увеличение его содержания проявляется в изменении зависимости между давлением почвенной влаги и влажностью

Нижеследующие примеры раскрывает сущность предлагаемого изобретения.

Берут белый порошок полимерного гидрогеля ПГГ — полиакриламида марки CS-131 (производство фирмы Sanyo Chemical Industries, Япония) с молекулярной массой 5·10 6 , и проводят обработку полимера на источнике Со 60 ионизирующим гамма-излучением до поглощенной дозы 3,0 кГр в течение 2-х часов при комнатной температуре в воздушной среде (атмосферные условия). Модифицированный облучением ПГГ стабилизируют водой распылением воды по поверхности полимера при перемешивании массы, при этом полимер впитывает воду и остается порошкообразным, затем проводят высушивание ПГГ при температуре 60°С в течение 2-х часов (время сушки зависит от количества ПГГ, но не превышает 2 часов). Полученный продукт, содержащий 20 мас.% воды, представляет собой белый порошок ПГГ с размерами частиц от 0,25 до 2 мм и имеет следующие показатели вязкоупругих свойств: модуль упругости 20,0 Па, динамическую вязкость 3000 Па при скорости сдвига 2,0·10 -4 с -1 . Водоудерживание ПГГ при его использовании составляет 300 г воды на 1 г полимера. Дополнительный запас влаги, получаемый при внесении ПГГ в почву, может составить до 10 мм и значительно пролангировать влажность на весь вегетационный период.

Расчетный прирост влажности почв при добавках ПГГ при набухании 300 мл на 1 г составляет 1 мм влаги, т.е. 10 т влаги на гектар при дозе внесения полимера порядка 100 кг/га. Максимальная эффективность полимера как мелиоранта обеспечивается уже при дозах 0,0002%.

Внесение ПГГ в почву при посеве семян озимой пшеницы в количестве 100-125 г/т наблюдалось повышение полевой всхожести с 14 до 30-40%. Внесение ПГГ в почву при посеве семян люцерны при дозе 50-100 г/т полевая всхожесть повышается с 20 до 47%.

Все, как в примере 1, только при стабилизации ПГГ водой в нее вводят микроэлементы магния путем обработки полимера водным раствором микроудобрений с концентрацией магния 5×10 -2 мас.%, распылением раствора по поверхности полимера при перемешивании массы с последующим высушиванием ПГГ при 60°С в течение 1 часа. Содержание воды в ПГГ составляет 30 мас.%.

Полученный ПГГ с указанной концентрацией микроэлемента магния вводят в почву в дозе полимера 50 кг/га при посеве семян рапса, что повысило урожай рапса на 1,5 ц/га при дозе внесения полимера порядка 70 кг/га на 23 ц/га, т.е. соответственно на 38 и 50% выше контроля.

Берут белый порошок с размером частиц 0,1-0,25 мм полимерного гидрогеля полиакриламида CS-131 (производство фирмы Sanyo Chemical Industries, Япония) с молекулярной массой 8·10 6 и проводят обработку полимера на источнике Со 60 ионизирующим гамма-излучением до поглощенной дозы 5,0 кГр в течение 1,5 часа при комнатной температуре в воздушной среде (атмосферные условия). Модифицированный облучением ПГГ стабилизируют водой распылением воды по поверхности полимера при перемешивании массы с последующим высушивание ПГГ при температуре 70°С в течение 30 минут. Полученный продукт, представляющий собой белый порошок ПГГ с содержанием воды в количестве 15 мас.%, имеет следующие показатели вязкоупругих свойств: модуль упругости 22,0 Па, динамическую вязкость 3500 Па при скорости сдвига 2,4·10 -4 с -1 . Водоудерживание ПГГ в почве при его использовании составляет 500 г воды на 1 г полимера. Дополнительный запас влаги, получаемый при внесении ПГГ в почву, может составить до 15 мм и значительно пролонгировать влажность на весь вегетационный период.

Расчетный прирост влажности почв при добавках ПГГ при набухании 500 мл на 1 г составляет 1,5 мм влаги, т.е. 15 т влаги на гектар при дозе внесения полимера порядка 100 кг/га.

При внесении полученного ПГГ в грунт при посеве моркови повышается полевая всхожесть семян и снижается расход семян.

Все, как в примере 3, только на поверхность частиц модифицированного облучением и стабилизированного ПГГ вводят микроэлементы меди, азота напылением порошка микроудобрений на частицы полимера до концентрации 3×10 -3 мас.%. При внесении полученного ПГГ в грунт с дозой порядка 80 кг/га урожайность моркови повышается на 10-12 т/га по сравнению с контролем.

Берут белый порошок полимерного гидрогеля полиакриламида марки AN-132 (компания SNF s.a. Floerger, Франция) с размером частиц 1,5-2,0 мм с молекулярной массой 7·10 6 , проводят обработку полимера на источнике Со 60 ионизирующим гамма-излучением до поглощенной дозы 7,0 кГр в течение 3,0 часов при комнатной температуре в воздушной среде (атмосферные условия). Модифицированный облучением ПГГ стабилизируют водой распылением воды по поверхности полимера при перемешивании массы с последующим высушивание ПГГ при температуре 60°С в течение 1,5 часа. Полученный продукт при содержании воды 25 мас.% представляет собой белый порошок ПГГ, имеющий следующие показатели вязкоупругих свойств: модуль упругости 23,07 Па, динамическую вязкость 3754 Па при скорости сдвига 2,6·10 -4 с -1 . Водоудерживание ПГГ при его использовании составляет 1000 г воды на 1 г полимера. Дополнительный запас влаги, получаемый при внесении ПГГ в почву, может составить до 25 мм и значительно пролонгировать влажность на весь вегетационный период.

Расчетный прирост влажности почв при добавках ПГГ при набухании 1000 мл на 1 г составляет 2,5 мм влаги, т.е. 25 т влаги на гектар при дозе внесения полимера порядка 200 кг/га.

Полученный по примеру ПГГ был эффективно использован при выращивании зерновых культур из расчета обеспечения полного водопотребления в период прорастания семян, появления всходов и формирования корневой системы. Например, для ячменя в период формирования корневой системы требуется 12-15 мм, для пшеницы от всходов до кущения требуется 36 мм влаги. Урожайность зерновых культур повышалась не менее чем в два раза.

Исследования ПГГ показали, что повышение эффективности азотных удобрений обеспечивается снижением гравитационного стока воды, удерживаемой гелем. На орошаемых землях необходимо поддерживать влажность на уровне не менее 70-80%. Если влаги будет удержано внесением гидрогеля в количестве 20-30% полевой влагоемкости, то эффективность орошаемых земель будет значительно повышена.

По предварительным оценкам внесение ПГГ даже при набухании 200 в дозе 100 кг/га можно обеспечить как минимум 10 циклов набухания в вегетационный период и удержать дополнительно 210 м 3 влаги.

Потребность всех овощных растений в воде наибольшая при прорастании семян. Поэтому внесение ПГГ в почву может обеспечить максимальную всхожесть семян на следующие культуры: огурец — при норме высева 6-8 кг/га необходимо 0,02 г ПГГ; салат кочанный — при норме высева 1,5-2 кг/га необходимо 0,005 г ПГГ; капуста белокочанная — при норме высева 1,2 кг/га необходимо 0,004 г ПГГ; морковь — при норме высева 2-2,5 кг/га необходимо 0,006 г ПГГ.

На полях прибрежных и предгорных районов, а также в аридных зонах со значительными колебаниями температуры и влажности ПГГ является дополнительным источником влаги в корнеобитаемом слое, что дает возможность выращивать растения в неблагоприятных условиях водного дефицита.

Размещенный в почвенном слое ПГГ обеспечивает удержание дополнительного запаса влаги за счет снижения потерь на гравитационный сток и физическое испарение, т.к. эта влага легко доступна растениям, поскольку ее основная часть лежит в области биологически доступных потенциалов. При определенных дозах ПГГ, внесенных в почву, значительно снижается плотность корнеобитаемого слоя, например для песка с 1,6 г/см 3 до 1,06 г/см 3 , что создает дополнительную пористость, повышает влагоемкость, тем самым улучшаются водно-физические свойства почвы.

Представленные примеры не ограничивают возможности изобретения и могут быть расширены специалистами в области при выращивании любых с/х культур.

Таким образом, заявленная совокупность признаков формулы и представленные примеры обеспечивают достижение технического результата.

В настоящее время способ отрабатывается на разных видах зерновых, бобовых и других культур.

Источник

Все про удобрения © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Классы МПК: C09K17/00 Материалы, улучшающие состояние почвы или стабилизирующие почву
C09K17/20 виниловые полимеры
C08J3/28 обработка волновой энергией или облучением частицами
Автор(ы): Аджиев Джамболат Рамазанович (RU) , Рафиков Равиль Сафович (RU) , Платов Анатолий Иванович (RU) , Ишханова Евгения Павловна (RU) , Годунова Евгения Ивановна (RU) , Данилова Татьяна Николаевна (RU) , Старцев Аркадий Сергеевич (RU)
Патентообладатель(и): Аджиев Джамболат Рамазанович (RU),
Рафиков Равиль Сафович (RU),
Платов Анатолий Иванович (RU),
Ишханова Евгения Павловна (RU),
Годунова Евгения Ивановна (RU),
Данилова Татьяна Николаевна (RU),
Старцев Аркадий Сергеевич (RU)
Приоритеты: