Устройство для выращивания монокристаллов
Использование: изобретение относится к области получения монокристаллов Чохральского. Сущность изобретения: устройство содержит камеру роста с верхней крышкой, фиксаторы, тигель для расплава, нагреватель, затравкодержатель с затравкой и горизонтальный тепловой экран, затравкодержатель с затравкой размещен внутри установленного на нем цилиндрического теплового экрана с крышкой. Последний соединен с горизонтальным тепловым экраном. Собранный тепловой экран размещают над тиглем с исходным материалом и ведут его плавление. После расплавления тепловой экран перемещают к крышке камеры и устанавливают на фиксаторах. Затем обычным способом ведут затравление и вытягивание кристалла. Устройство позволяет сократить время на расплавление исходного материала, снизить энергопотребление установки и увеличить выход бездислокационных кристаллов. 1 з.п. ф-лы, 2 ил.
Предлагаемое изобретение относится к технологии получения полупроводниковых материалов методом Чохральского.
Известно устройство для вытягивания кристаллов, включающее герметичную камеру роста, тигель для расплава, нагреватель, систему теплоизоляции, содержащую горизонтальный тепловой экран, соединенный с приводом его вертикального перемещения, и затравкодержатель с затравкой (см. заявка ФРГ N 3005492, МПК C 30 B 15/14, 1981 г.).
Недостатком устройства является его высокая мощность, обусловленная большими потерями тепла при плавлении исходного материала в тигле для расплава. Горизонтальный тепловой экран не может быть использован для экранирования тигля при плавлении исходного материала, так как он имеет центральное отверстие, размер которого превышает размер выращиваемого кристалла.
Кроме того, наличие специального привода для вертикального перемещения теплового экрана усложняет конструкцию устройства.
Известна установка для вытягивания монокристаллов из расплава, включающая герметичную камеру роста с верхней крышкой, тигель для расплава, установленный в полости нагревателя, затравкодержатель с закрепленной в нем затравкой, имеющий горизонтальный тепловой экран, и привод перемещения затравкодержателя (см. патент США N 3511610, НКИ 23-273, 1970 г.).
Это устройство является наиболее близким предложенному и принято авторами за прототип.
В устройстве-прототипе горизонтальный тепловой экран расположен непосредственно на затравкодержателе и перемещается вместе с ним. Он используется после расплавления кристалла и служит, в основном, для защиты затравки от ссыпки со штока моноокиси кремния. Такое расположение теплового экрана упрощает конструкцию установки по сравнению с устройством, описанным выше, так как не требует специального привода перемещения теплового экрана.
Однако известная установка также имеет высокую потребляемую мощность, связанную с потерями тепла при плавлении исходного материала.
Использование имеющегося теплового экрана для экранирования тигля с целью уменьшения тепловых потерь не представляется возможным, так как при расположении затравки над тиглем, во время расплавления исходного материала на ней конденсируется моноокись кремния и другие примеси. Кроме того, она может оплавиться, так как температура расплава в тигле выше температуры вытягивания. Все это делает проблематичным получение монокристаллов.
Сущность предложения заключается в том, что устройство для выращивания монокристаллов, включающее герметичную камеру роста с верхней крышкой, тигель для расплава, установленный в полости нагревателя, затравкодержатель с закрепленной в нем затравкой, имеющий горизонтальный тепловой экран, и привод перемещения затравкодержателя, снабжено фиксатором, закрепленным к крышке камеры, а затравкодержатель снабжен дополнительным тепловым экраном в виде полого цилиндра, верхняя часть которого имеет с внешней стороны кольцевой буртик, взаимодействующий с фиксатором, и расположена на затравкодержателе, а нижняя часть имеет крышку, установленную с возможностью поворота вокруг горизонтальной оси, и соединена с горизонтальным тепловым экраном.
Кроме того, дополнительный тепловой экран также снабжен фиксатором, взаимодействующим с крышкой дополнительного теплового экрана.
Предложенная конструкция теплового экрана, состоящая из полого цилиндра, установленного на затравкодержателе, и крышки, закрывающей его нижнюю часть, на которой размещен горизонтальный тепловой экран, позволяет использовать его для экранирования тигля при расплавлении исходного материала. Для фиксации крышки в закрытом положении использован фиксатор, закрепленный на затравкодержателе.
При расположении такого теплового экрана непосредственно над тиглем он отражает большое количество лучистой энергии, излучаемой при плавлении. Это приводит к сокращению расхода электроэнергии на расплавление исходного материала и уменьшению мощности установки.
При этом затравка размещена внутри теплового экрана и защищена от конденсата моноокиси кремния, что повышает возможность получения бездислокационных монокристаллов.
Наличие фиксатора, закрепленного на крышке камеры, и буртика в верхней части цилиндрического экрана позволяет конструктивно просто освобождать затравку из теплового экрана для проведения процесса затравления и вытягивания монокристалла без применения специальных механизмов.
На фиг. 1 показана схема устройства для выращивания монокристаллов во время расплавления исходного материала.
На фиг. 2 представлена схема устройства для выращивания монокристаллов в момент затравления.
Устройство содержит камеру роста 1 с верхней крышкой 2, тигель 3 для расплава, установленный в подставке 4. Тигель 3 размещен в полости нагревателя 5, имеющего теплоизоляцию 6. В затравкодержателе 7 закреплена затравка 8. Вертикальное перемещение затравкодержателя 7 осуществляют приводом 9. Затравкодержатель 7 снабжен дополнительным тепловым краном 10 в виде полого цилиндра, верхняя часть 11 которого имеет с внешней стороны кольцевой буртик 12 и установлена на затравкодержателе 7. Нижняя часть 13 дополнительного теплового экрана 10 имеет крышку 14, которая при отклонении установленного на нем фиксатора 15 поворачивается относительно горизонтальной оси 16. На нижней части 13 теплового экрана 10 размещен горизонтальный тепловой экран 17. К верхней крышке 2 камеры роста 1 закреплен фиксатор 18, на котором устанавливают тепловой экран 9 на буртике 12.
Устройство работает следующим образом.
В кварцевый тигель 3 загружают исходный материал. На затравкодержатель 7 устанавливают дополнительный тепловой экран 10 с фиксатором 15. В нижней части 13 теплового экрана 10 размещают горизонтальный тепловой экран 17, закрывают ее торец крышкой 14 и фиксируют в закрытом положении фиксатором 15. Затем включают привод 9 перемещения затравкодержателя 7 и устанавливают собранный тепловой экран над тиглем 2 с исходным материалом. После этого подводят электропитание к нагревателю 5 и ведут плавление исходного материала.
После получения расплава затравкодержатель 7 с установленными на нем тепловым экраном приводом перемещения 9 поднимают вверх до тех пор, пока верхняя часть 11 дополнительного теплового экрана 10 буртиком 12 не зафиксируется на фиксаторе 18.
Затем затравкодержатель 7 уже без теплового экрана начинают перемещать вниз. При прохождении затравкодержателя в полости дополнительного теплового экрана 10 происходит контакт затравкодержателя 7 с фиксатором 15. При этом фиксатор 15 отклоняется и освобождает крышку 14, которая свободно поворачивается относительно горизонтальной оси 16 и открывает нижнюю часть 13 теплового 10 для дальнейшего прохождения затравкодержателя 7 с затравкой 8 до соприкосновения ее с расплавом исходного материала. После этого ведут вытягивание монокристалла.
Экранирование тигля при расплавлении исходного материала позволяет сократить время на расплавления исходного материала на 30% снизить мощность, потребляемую установкой в среднем в 1,5 раза. Кроме того, предложенная конструкция позволяет защитить затравку от конденсирования на ней моноокиси кремния и других примесей, что позволяет повысить вероятность получения бездислокационных кристаллов.
1. Устройство для выращивания монокристаллов, включающее герметичную камеру роста с верхней крышкой, тигель для расплава, установленный в полости нагревателя, затравкодержатель с закрепленной в нем затравкой, имеющий горизонтальный тепловой экран, и привод перемещения затравкодержателя, отличающееся тем, что устройство снабжено фиксатором, закрепленным к крышке камеры, а затравкодержатель снабжен дополнительным тепловым экраном в виде полого цилиндра, верхняя часть которого имеет с внешней стороны кольцевой буртик, взаимодействующий с фиксатором, и расположена на затравкодержателе, а нижняя часть имеет крышку, установленную с возможностью поворота относительно горизонтальной оси, и соединена с горизонтальным тепловым экраном.
2. Устройство по п.1, отличающееся тем, что дополнительный тепловой экран снабжен фиксатором, взаимодействующим с крышкой.
Источник
Как делают микропроцессоры. Польский химик, голландские монополисты и закон Мура
Современные микропроцессоры поражают своей сложностью. Наверное, это высочайшие технологические достижения человеческой цивилизации на сегодняшний день, наряду с программированием ДНК и автомобилями Tesla, которые после заказа через интернет сами приезжают к вашему дому.
Удивляясь красоте какой-нибудь микросхемы, невольно думаешь: как же это сделано? Давайте посмотрим на каждый шаг в производственном процессе.
Метод Чохральского
Жизнь микросхемы начинается с песка. Песок почти полностью состоит из кварца, а это основная форма диоксида кремния, SiO2. Сам кремний — второй по распространённости элемент в земной коре.
Чтобы получить из кварца чистый кремний, песок смешают с коксом (каменный уголь) и раскаляют в доменной печи до 1800 °C. Так удаляется кислород. Метод называется карботермическое восстановление.
Доменная печь с кварцем и коксом
В результате получаются блоки кремния поликристаллической структуры, так называемый технический кремний.
Чистота полученного кремния достигает 99,9%, но его необходимо очистить, чтобы получить поликристаллический кремний. Тут применяют разные методы. Самые популярные — хлорирование, фторирование и вытравливание примесей на межкристаллитных границах. Техпроцессы очистки кремния постоянно совершенствуются.
Затем из поликристаллического кремния выращивают монокристаллический кремний — это кремний электронного качества с чистотой 99,9999% (1 атом примесей на миллион атомов кремния). Кристаллы выращивают методом Чохральского, то есть введением затравки в расплав, а затем вытягиванием кристалла вверх. Метод назван в честь польского химика Яна Чохральского.
Метод Чохральского, Иллюстрация: Д. Ильин
Поэтому монокристаллический кремний представляет собой красивые цилиндрические слитки — их ведь вытягивали из расплава под воздействием земной гравитации.
Монокристаллический кремний электронного качества, нижняя часть слитка
Из этих цилиндрических слитков нарезают кремниевые пластины диаметром 100, 150, 200 или 300 мм. Многие задаются вопросом, почему у пластин круглая форма, ведь это нерациональный расход материала при нарезке на прямоугольные микросхемы. Причина именно в том, что кристаллы выращивают методом Чохральского, вынимая вверх.
Чем больше диаметр кремниевой пластины — тем эффективнее расходуется материал. Пластины доставляют на полупроводниковую фабрику, где начинается самое интересное.
Заводы
В мире всего четыре компании, способные производить продвинутые микросхемы топового уровня: Samsung, GlobalFoundries, Taiwan Semiconductor Manufacturing Company (TSMC) и Intel.
В других странах производство микроэлектроники отстаёт от лидеров на годы или десятилетия. Причина в том, что строительство современного завода — дорогостоящее мероприятие (около $10-12 млрд), а прогресс идёт так быстро, что этот завод устареет через несколько лет. Поэтому позволить себе такие инвестиции могут только компании с прибылью в десятки миллиардов долларов в год.
Кто получает такую прибыль? Тот, кто продаёт товаров на сотни миллиардов долларов. Это мировой лидер в производстве смартфонов и оперативной памяти Samsung, а также мировой лидер в производстве десктопных и серверных процессоров Intel. Ещё две компании GlobalFoundries и TSMC работают по контрактам в секторе B2B.
Столь высокая стоимость современного завода микроэлектроники объясняется высокой стоимостью оборудования, которая обусловлена чрезвычайной сложностью процесса.
Бор и фосфор
В кристалле кремния у каждого атома по 4 электрона — и каждая из четырёх сторон образует связь с соседним атомом в квадратной кристаллической решётке. Свободных электронов нет. Значит, кристалл не проводит электрический ток при комнатной температуре.
Чтобы запустить свободные электроны, нужно заменить некоторые атомы кремния на атомы других элементов с 3 или 5 электронами на внешней орбите. Для этого идеально подходят соседние с кремнием элементы по таблице Менделеева — бор (3 электрона) и фосфор (5). Их подмешивают к кремнию, и эти атомы встают в его кристаллическую решётку. Но в ней только четыре связи. Соответственно, или одной связи не хватает, или освобождается свободный электрон. Заряд такого атома + или −. Так бор и фосфор в решётке кремния создают два слоя полупроводников с зарядами противоположного знака. «Дырочный» слой p- (positive) с бором и недостающим электроном — сток. А «электронный» слой n- (negative) с фосфором и лишними электронами — исток. Они покрыты изолятором из оксида кремния.
Конструкция полевого транзистора MOSFET с управляющим p-n-переходом
Транзистор — минимальный элемент и основной компонент интегральной схемы. В зависимости от напряжения в затворе из поликристаллического кремния ток или потечёт с истока, или нет. Это соответствует логическому 0 и 1.
Вот как выглядит p-n-переход в транзисторе на атомарном уровне при изменении напряжения в затворе:
Из таких транзисторов состоят все логические элементы, а из них инженеры составляют конструкцию микропроцессора.
Микроархитектура
Современные микросхемы состоят из миллиардов транзисторов, соединённых в сложные конструкции: ячейки памяти, микроконтроллеры, криптографические модули и так далее. Все они располагаются на микросхеме в соответствии с планом инженера-микросхемотехника.
AMD Athlon XP 3000+ из каталога siliconpr0n
Инженеры используют специальное ПО для проектирования микросхем. Таких программ огромное множество, в том числе и бесплатных, среди них нет единого стандарта.
В этом ПО выполняется симуляция электрических и физических свойств микросхемы и отдельных цепей, а также тестируется их функциональность.
Проектированием занимаются целые отделы из сотен инженеров, ведь на современных микросхемах огромное количество элементов. У процессоров производства TSMC (AMD) по 7-нм техпроцессу 113,9 млн транзисторов на мм². Intel поставила амбициозную цель достичь плотности 100 млн транзисторов на мм² уже на техпроцессе 10 нм, почти как 7 нм у TSMC. Цель оказалась слишком амбициозной — с этим и связана позорная задержка с внедрением 10 нм.
Все слои микросхемы объединяются в итоговый проект — blueprint, который по электронной почте отправляют на завод в Китае или Тайване.
Фотодело
Из полученных файлов на заводе делают фотомаски — шаблоны для печати микросхем. Они похожи на плёночные негативы, из которых на фотоувеличителе печатаются фотографии. Но если в фотографии эта техника осталась в прошлом, то в производстве микроэлектроники она сохранилась до сих пор.
Фотомаска
Вот как выглядит современный «фотоувеличитель», а именно, степпер компании ASML для фотолитографии в глубоком ультрафиолете (EUV).
Иллюстрация: ASML
Машина весом 180 тонн размером с автобус продаётся по цене около $170 млн. Это самое сложное и дорогое оборудование на современном заводе микроэлектроники. Компоненты для такого степпера производят около 5000 поставщиков со всего мира: линзы Carl Zeiss (Германия), роботизированные манипуляторы VDL (Нидерланды), лазеры Cymer (США, куплена ASML в 2013 году).
Фиолетовым цветом показан маршрут световых импульсов от источника к прибору подсветки, затем к фотомаске с топологией кристалла — и через проекционную оптику на кремниевую пластину.
Пластины из монокристаллического кремния, полученного на первом этапе нашего процесса, помещаются в этот степпер, и здесь засвечиваются через фотомаску, распечатанную из файлов с проектного бюро. Это завершение всего технологического цикла.
Засветка кремниевой пластины
Засветка пластины лазером EUV — тоже весьма нетривиальный процесс. Вот описание и видео из журнала IEEE Spectrum: «Внутри самой современной EUV-машины каждую секунду 50 тыс. капель расплавленного олова падают через камеру в её основании. Пара высокоэнергетических лазеров на углекислом газе ударяет по каждой капле, создавая плазму, которая, в свою очередь, испускает свет нужной длины волны. Первый импульс преобразует каплю олова в туманную форму блина, так что второй импульс, который является более мощным и следует за ним всего через 3 микросекунды, взрывает олово в плазму, которая светится на длине волны 13,5 нанометров. Затем свет собирается, фокусируется и отражается от узорчатой маски, чтобы проецировать узор на кремниевую пластину». Для 7-нм процессоров используется литография в экстремальном ультрафиолете с длиной волны 13,5 нм.
Настоящая фантастика. Неудивительно, что степпер для EUV по самому современному техпроцессу в мире умеет делать только одна голландская компания ASML, которая сейчас является фактически монополистом в этой нише.
Засветка пластины — не единственный шаг на производстве. Перед степпером пластины нагревают до 1000 °С и окисляют поверхность, чтобы сформировать непроводящий слой из диоксида кремния SiO2. Потом на этом слое диэлектрика равномерно распределяют фоточувствительный материал — фоторезист. И только потом помещают в степпер.
Засветка фоторезиста на кремниевой пластине в степпере
На засвеченных участках пластины обнажается слой SiO2, всё остальное защищено фоторезистом. Теперь наступает этап плазменного вытравливания (plasma etching), где с засвеченных участков снимается слой SiO2, создавая углубления. Вытравленные участки снова окисляют. Поверх SiO2 наносят электропроводящий слой поликристаллического кремния. Потом снова покрывают фоторезистом — и цикл повторяется несколько раз, создавая новые углубления уже во втором слое, затем в третьем, потом пластина покрывается слоем металла — и цикл повторяется. В итоге формируются те самые структуры полевых транзисторов с p-n переходом. Цикл повторяется многократно, пока не будет создана полная структура интегральной микросхемы со всеми необходимыми элементами.
Несколько циклов нанесения разных материалов (фоторезист, поликристаллический кремний, диоксид кремния, металл), засветки и плазменного вытравливания создают многослойную структуру транзистора
В зависимости от техпроцесса, размер минимальных элементов в этих структурах может быть 14 нм, 10 нм, 7 нм, 5 нм или меньше, но это весьма условная разница, которая не совсем отражает реальность. Например, на фотографиях под микроскопом ниже можно сравнить размер транзисторов в кэше L2 процессоров Intel (техпроцесс 14 нм+++) и TSMC (7 нм). У первого ширина затвора 24 нм, у второго 22 нм, высота одинаковая.
Сравнение транзисторов в кэше L2 процессоров Intel (14 нм+++) и TSMC (7 нм), сканирующий электронный микроскоп. Источник
По размеру они практически не отличаются, хотя TSMC плотнее размещает эти транзисторы на микросхеме.
В зависимости от размера, на одной пластине помещается от нескольких десятков до нескольких тысяч микросхем.
Микросхемы на кремниевой пластине
Пластины с готовым продуктом проверяют, а затем осуществляется сборка — упаковка чипов в корпуса, подключение контактов. Сборка полностью автоматизирована.
Сборка микросхем
Потом чипы снова тестируют — и если всё удачно, то отправляют клиенту. Через несколько месяцев процессор уже вовсю работает в сервере или на домашнем компьютере, или в телефоне счастливого покупателя.
Мур не сдаётся. Intel тоже
Утратившая технологическое лидерство компания Intel в реальности не испытывает недостатка в денежных средствах. На самом деле совсем наоборот, компания сейчас показывает рекордные прибыли. И она намерена серьёзно инвестировать в научно-исследовательские и опытно-конструкторские работы.
Благодаря партнёрству с ASML и EUV-литографии Intel планирует вернуться к прежним темпам выпуска новых поколений CPU раз в 2 года, начав с 7-нм техпроцесса в конце 2021 года и дойдя до 1,4-нм технологии в 2029 году.
Слайд из презентации Intel, показанный в выступлении представителя ASML в декабре 2019 года, источник
Если планы реализуются, то Intel сохранит действие закона Мура и догонит AMD/TSMC. В 90-е годы тоже были моменты, когда AMD выпускала более производительные процессоры. После тупика с Pentium 4 ответом стало новое ядро Core — и лидерство Intel на протяжении десятилетий. Впрочем, это было довольно скучное время. Для рынка гораздо полезнее, когда происходит жёсткая «заруба» между конкурентами, как сейчас, в 2021 году.
На правах рекламы
Наша компания предлагает в аренду серверы с процессорами от Intel и AMD. В последнем случае — это эпичные серверы! VDS с AMD EPYC, частота ядра CPU до 3.4 GHz. Создайте собственный тарифный план в пару кликов, максимальная конфигурация — 128 ядер CPU, 512 ГБ RAM, 4000 ГБ NVMe.
Источник