Меню

Виды почв по микроэлементному составу

Группировка почв по содержанию микроэлементов. Ч.2

Сельскохозяйственные растения с достаточным запасом микроэлементов в почве формируют более высокий и качественный урожай, в отличие от растений, выращиваемых в почвах с низким уровнем микроэлементов.

Ниже представлена градация почв, позволяющая определить уровень наличия в почве тех или иных микроэлементов.

Как меняется содержание микроэлементов в почве?

🔹Марганец. Распределен в почве неоднородно. Содержится в виде конкреций и примазок. Накапливается в верхних горизонтах почв. Больше всего содержится в почвах, богатых железом, а также органическим веществом.

🔹Цинк. В большей степени распределен в почве однородно. Запасается в верхних горизонтах почв. Больше всего содержится в почвах более тяжелого гранулометрического состава, а также богатых органикой. Его потери наблюдаются потеря цинка в подзолах и бурых кислых почвах.

🔹Медь. Медь в почвах относительно малоподвижна. Накапливается в верхних горизонтах почв. Дефицит меди, как правило, возникает у растений на кислых песчаных и торфянистых почвах.

🔹Кобальт. Кобальт усиливает азотфиксирующую способность микроорганизмов бобовых растений, что положительно влияет на развитие у них клубеньков. Растения, как правило, испытывают недостаток кобальта в щелочных и известковых почвах, а также в слабовыщелоченных почвах. Особенно ощущают недостаток кобальта бобовые.

🔹Бор. Уровень бора выше в более тяжелых почвах, богатых органическим веществом. Борная кислота, которая образуется в почве или вносится с удобрениями, – подвижное соединение, способное вымываться осадками. Известкование почвы уменьшает доступность бора для растений. Высокие концентрации подвижной формы элемента находятся в засоленных и солонцовых почвах.

🔹Молибден. Менее растворим в кислых почвах и подвижен в щелочных. Наиболее бедны им песчаные и супесчаные и почвы. Больше содержится в тяжелых, глинистых и суглинистых почвах.

Источник

Химический состав почв.Макроэлементы в почвах

↑ Химический состав почв

Состав элементов в почвенном покрове, их распределение и ассоциации определяются комплексом факторов почвообразования. Прежде всего, это почвеннобиологический круговорот веществ в результате жизнедеятельности живых организмов и разложения их остатков. Избирательное поглощение веществ изменяет почвы по сравнению с материнской породой, определяет глобальную геохимическую работу растений. Главнейшей особенностью химического состава почв является значительное содержание в ней органического углерода и азота, за редким исключением отсутствующих в породе. Благодаря концентрированию расте¬ниями и микроорганизмами в почве накапливаются или задерживаются при промывном водном режиме и другие биофильные элементы – фосфор, сера, ка¬лий, кальций, магний и другие. Избирательность растений в поглощении эле¬ментов характеризует коэффициент биологического поглощения Ах, рассчитываемый как отношение содержания элемента X в золе растений к его содержанию в литосфере (кларку). Если значение коэффи¬циента не превышает 0,7, то элемент практически не накапливается в растении; при значениях, лежащих в пределах 0,71,3, растение практически не влияет на распределение элемента в почве. В тех случаях, когда коэффициент Ах превы¬шает единицу, имеет место избирательность растения к этому элементу, в результате чего возможно его накопление в почве благодаря поступлению опада [Карпачевский, 1993]. Значения коэффици¬ентов поглощения некоторых элементов: бор 33 и 40 (к почве и литосфере), магний – 3,6 и 11,0, алюминий – 0,2, кремний – 0,5, фосфор – 7,4 и 88, калий – 1,2 и 2,5, кальций – 1,0 и 2,2, железо – 0,2 и 0,3, сера 100 и 60, кадмий – 0,08 и 0,02.

На накопление элементов в почвах оказывает влияние состав почвеннопоглощающего комплекса, характер выноса растворенных соединений, состав органического вещества. По сравнению с осадочными породами, почвы характеризуются пониженным содержанием натрия, кальция, магния, хлора, стронция, которые выносятся в процессе выветривания и почвообразования.

↑ Макроэлементы в почвах

К основным элементам, определяющим химический состав и состояние почвы, являются азот, фосфор и калий.

Растения и животные могут поглощать только связанный азот в форме минеральных соединений – азотнокислых и аммиачных солей. В незначительной степени они могут усваивать растворимые в воде амиды и простейшие аминокислоты.

Функцию перевода свободного азота в связанный выполняют бактерии. Известны аммонифицирующие, нитрифицирующие, денитрифицирующие, азотфиксирующие и другие бактерии. Аммонифицирующие бактерии способны разлагать сложные органические соединения с образованием аммиака.

CH2NH2COOH + O2 = HCOOH + CO2 + NH3

глицин муравьиная кислота аммиак

Читайте также:  Кассетная технология выращивания рассады выращивание рассады

CH2NH2COOH + Н 2 О = CH3OH + CO2 + NH3

глицин метиловый спирт

Окисление аммиака до нитратов называется нитрификацией. Нитрификация может идти по следующему уравнению:

2NH3 + 3O2 = 2HNO2 + H2O (первая фаза)

2HNO2 + O2 = 2HNO3 (вторая фаза)

На скорость окисления аммиака до нитратов влияет также обработка почвы, ее известкование и удобрение.

Некоторые бактерии в анаэробных условиях вызывают процесс денитрификации – восстановление нитратного азота до газообразного азота. Для этих бактерий окисление является источником энергии. Денитрификация сопряжена с потерей азота, что является крайне нежелательным для почв, используемых в сельскохозяйственном производстве.

Восстановление нитратов до нитритов происходит при участии фермента нитратредуктазы, а дальнейшее восстановление нитритов – нитритредуктазы по следующей формуле:

С6Н12О6 + 4NO3 = 6CO2 + 6Н2O + 2NO2

В почве происходит также процесс вымывания нитратов из почвы осадками и дренажными водами. Это связано с тем, что нитраты находятся преимущественно в почвенном растворе. Он имеет высокую подвижность и легко передвигается в почве. Нитратный азот (NO3) не образует в почве какихлибо малорастворимых солей и не поглощается отрицательно заряженными почвенными коллоидами.

Содержание и формы азота в почвах оказывают большое влияние на рост и развитие растений. При недостатке азота их рост ухудшается. При нормальном азотном питании растений повышается синтез белковых веществ, усиливается жизнедеятельность организмов, ускоряется рост и задерживается старение листьев. Избыток азота задерживает созревание растений, способствуют образованию большой вегетационной массы, уменьшает количество зерна, клубней, корнеплодов.

Азот – один из основных элементов, необходимых для питания растений. Он входит в простые и сложные белки, которые являются главной составной частью протоплазмы растительной клетки, в состав нуклеиновых кислот, содержится в хлорофилле, фосфатидах, алкалоидах, витаминах, ферментах и других органических веществах клеток.

Фосфор (Р). Фосфор относится к числу распространенных элементов в земной коре 8×102 весовых процента. Основная масса фосфора находится в природных фосфатах (170 видов), а также в породах с фосфорсодержащими минералами (амблигонит, вивианит, монацит, пироморфит и т.д.).

Минеральные формы фосфора в почвах преобладают над органическими. Минеральные соединения представлены трудно растворимыми фосфатами – солями кальция, железа и алюминия. При этом в нейтральных и щелочных почвах преобладают фосфаты кальция, в кислых – фосфаты полуторных окислов. Более высокой растворимостью характеризуются кальциевые соли фосфорной кислоты. Большая часть минерального фосфора не доступна растениям, поэтому потребность растений в нем удовлетворяется не полностью. Многие знают что, отдых в удмуртии является отличным местом для отдыха всей семьёй, также отдых в удмуртии славится своими санаториями и горнолыжными курортами, на которых можно хорошо провести время.

Входящие в почвы глинистые минералы адсорбируют фосфатионы сильнее всего в кислой среде. Так как глинистые минералы способны поглощать и обменивать анионы фосфорной кислоты в значительном количестве, то и сама почва должна обладать этим свойством. Фосфор органических соединений составляет в пахотном слое чернозема и дерновоподзолистых почв около половины всего содержащегося в почве фосфора. В органической форме фосфор находится в основном в гумусе. В небольших количествах встречаются фосфаты, сахарофосфаты и другие органические соединения.

В живых организмах фосфор входит в состав кислот и органических соединений, участвует в углеводном, жировом, азотном обмене растений, входит в состав скелета позвоночных, играет роль в нервной и других тканях.

Калий (К). Калий принадлежит к одному из наиболее распространенных в земной коре элементов. Среднее содержание в земной коре – 2,14%. В почвах содержание калия составляет 1,36 весового %. Содержание калия в почвах выше, чем фосфора и азота, вместе взятых. Калием богаты почвы, образующиеся на кислых и осадочных породах. Больше калия в тяжелых почвах, так как он входит в состав минералов, образующих преимущественно глинистые частицы. В глинистых и суглинистых почвах общее количество К2О достигает 23%, в песчаных, супесчаных и торфяных почвах значительно меньше. В почве калий находится в различных по доступности растениям соединениях, которые можно разбить на пять групп:

1. Калий, находящийся в алюмосиликатах (ортоклазе (полевом шпате) – K2Al2Si6O16, биотите – (H,K)2(Mg,Fe)2(Al,Fe)2(SiO4)3, глауконите – (K2O•4R2O3•10SiO2•nH2O), мусковите – H2KAl3Si3O12, и т. д.).

Отроклаз занимает видное место в составе почвы, однако калий, входящий в его состав, растениями не усваивается. В мусковите, биотите и нефелине калий более доступен растениям. Вступая в реакции обменного поглощения с солями почвенного раствора, а также с кислотами, выделяемыми корнями растений, часть калия переходит в растворимое состояние.

Читайте также:  Согласно модели общественного развития природная среда климат почва полезные ископаемые

2. Калий, адсорбционносвязанный на поверхности почвенных коллоидов. Его содержание колеблется от 0,09 до 1,5 смоль/кг почвы. От валового содержания калия в почве эта форма составляет только 0,83 %. Тем не менее обменный калий играет важную роль в питании растений, что обусловлено сравнительно легким переходом некоторой части адсорбированного калия в раствор при обмене на другие катионы. Из раствора К поглощается деятельной поверхностью корневых волосков в обмен на Н.

3. Водорастворимый калий. Составляет 1/5 – 1/10 количества обменного калия. Появление водорастворимого калия в почве является следствием ряда процессов: 1) гидролиза калийных минералов; 2) разрушения минералов корневыми выделениями растений; 3) действие на минералы азотной кислоты и других кислых продуктов жизнедеятельности организмов; 4) вытеснение обменного калия солями, попадающими в почву с удобрениями и продуктами корневых выделений растений.

4. Калий, входящий в состав плазмы микроорганизмов. Этот калий становится доступным для растений только после отмирания микроорганизмов. Общее содержание калия в отдельных фракциях почв возрастает с увеличением дисперсности частиц. Наиболее доступным является калий илистой фракции, в которой он содержится преимущественно в обменном состоянии.

Из наиболее распространенных в почве групп глинистых минералов, монтмориллонитовая и гидрослюдная группы заметно фиксируют калий, так как им свойственна внутрикристаллическая адсорбция катионов, а каолинитовая не обладает подобным свойством.

Количество закрепляемого калия неодинаково для различных почв: черноземы обладают большей способностью к необменному поглощению калия, чем дерновоподзолистые почвы.

Железо (Fe). Оксиды и гидроксиды железа определяют цвет многих почв. В почвах железо присутствует в виде оксидов и гидроксидов, находящихся в виде различных кристаллических, скрытокристаллических или аморфных минералов, в хелатной форме – в почвах, богатых органическим веществом. Преобразованию соединений железа способствует органическое вещество, а также микроорганизмы.

Почвы с дефицитом железа для сельскохозяйственных растений распространены достаточно широко (карбонатные, щелочные, марганцевожелезистые разновидности почв). Однако даже на бедных железом почвах его абсолютного дефицита для растений не отмечается. Наблюдается недостаток только легкорастворимых форм.

Марганец (Mn). Марганец является одним из наиболее распространенных элементов в литосфере.

Сложное химическое поведение элемента приводит к образованию большого числа его оксидов и гидроксидов, которые осаждаются на почвенных частицах, а также конкреций различного диаметра, которые способны концентрировать железо и другие микроэлементы почвы.

Оксиды Mn являются наиболее аморфными соединениями, однако в некоторых почвах идентифицированы их кристаллические разновидности. Соединения марганца способны быстро окисляться и восстанавливаться при изменении условий почвенной среды. При этом окислительные условия снижают доступность марганца для биоты, восстановительные – увеличивают, иногда до токсичных значений. Восстановление оксидов марганца влияет на катионный обмен почв двояко: прекращается обмен на поверхности оксидов и вновь образующийся ион Mn2+ вступает в конкуренцию с другими катионами. Большое влияние на процессы окисления – восстановления соединений марганца и образование марганцевых конкреций оказывает микробиологическая активность почв.

Марганец не считается загрязняющим почву металлом. Однако при избыточных содержаниях, превышающих предельные концентрации, он становится загрязнителем и может оказывать токсичное действие на растения.

Алюминий (Al). Алюминий является одним из главных элементов земной коры. Его кларк в литосфере составляет 8,80. Число минералов, содержащих алюминий, исчисляется сотнями.

По абсолютному содержанию в почве кальций и магний входят во вторую группу элементов, содержание которых изменяется в почве от десятых долей до нескольких процентов. Обычно их содержания достаточно для удовлетворения потребностей растений, и эти элементы, особенно кальций, не считаются удобрительными. Среднее содержание кальция в литосфере – 3,6 %, магния – 2,1 %, однако в дерновоподзолистых почвах их содержание в 3–9 и 2–7 раз меньше. Эти элементы входят в состав очень большого количества горных пород. Большая их часть находится в виде труднорастворимых соединений, но при почвообразовательных процессах они переходят в более растворимые формы, которые могут быть потреблены растениями в процессе роста.

Читайте также:  Вредна ли незамерзайка для почвы

Кальций и магний обычно встречаются в почве и растениях в виде двухвалентного катиона. Наиболее доступными для растений являются обменнопоглощенные почвенными коллоидами ионы этих элементов. Так, на дерновоподзолистой почве содержание обменного кальция в пахотном слое составляет 500–1000 мг/кг почвы, или 20–30 % от валового (0,530,32 % от веса почвы), магния – 100–300 мг/кг почвы, или 5–10 % от валового (0,480,30 %).

При окультуривании дерновоподзолистых почв доля подвижных форм Са и Мg от валовых обычно растет. Оптимальное соотношение подвижных магния и кальция – 0,4–0,8, поэтому систематическое внесение извести только в форме СаСО3 может нанести и вред. Возможен и относительный избыток обменного магния. По различным данным вредный порог – более 40 % обменного магния или водорода от ЕКО, либо когда количество обменного магния сравнивается с количеством кальция. Недостаток магния обычно бывает при эквивалентном соотношении Са/Мg менее 6.

Обменный кальций находится в равновесии с кальцием, находящимся в почвенном растворе, хотя последнего обычно бывает в 20100 раз меньше. Обычно в некислых почвах кальций занимает 75–85 % общей емкости катионного обмена, что определяется предпочтительной адсорбцией иона кальция по сравнению с другими ионами благодаря сравнительному малому его гидратированному радиусу относительно к его двойному положительному заряду. Обменный кальций удерживается почвой сильнее, чем магний (в 2–4 раз) или калий (в 4–6 раз), и в силу незначительной потребности растений в кальции его можно считать микроэлементом.

Магний в химическом отношении сходен с кальцийионом, но поведение его существенно отличается. В негидратированном виде ион магния достаточно мал, чтобы входить в кристаллическую решетку ряда минералов, тогда как для кальция нужны большие пространства. Магнийсодержащие минералы сильно выветриваются, что ведет к истощению их запасов в почвах. Магний доступен растениям не только из глинистых фракций, но и из пылеватых фракций, даже межслоевой магний может использоваться растениями. Обычно 12–18 % обменных позиций в почве занято магнием, и его достаточно для нормального питания растений, но для легких дерновоподзолистых почв иногда отмечается возможность его недостатка. Избыток магния наблюдается, когда им занято 40 % и более.

В дерновоподзолистых почвах Беларуси валовое содержание кальция в пахотном слое составляет 0,4–1,0 %, магния – 0,3–0,8 %, что существенно меньше их кларков. Как никакие другие катионы в условиях гумидного климата, ионы этих элементов вымываются и уносятся через гидрографическую сеть. В естественных почвах за тысячелетия процесс обеднения двухвалентными катионами достиг большого размаха, следствием чего является повышенная генетическая кислотность почти всех почв гумидной зоны и Беларуси, в частности.

Кальций и магний являются важными элементами и как составные части культурных растений. Поглощение обменных оснований корнями растений является основным источником питания растений кальцием и магнием, а также основным источником подкисления вследствие обмена на водород, выделяемый корнями, поскольку кальций и магний поглощаются растениями почти исключительно в обменной форме.

Кальций – структурный элемент клеточных оболочек, и поэтому он жизненно необходим для образования новых клеток. Этот элемент настолько прочно связан со старыми клетками, что при дефиците не может быть удален из них для образования новых клеток. Основная его роль – в поддержании в растениях баланса питательных веществ, для целостности плазмалеммы, причем Са поглощают только молодые части растений, он не реутилизируется. Недостаток кальция сдерживает рост всех частей растения, что может привести и к усилению недостаточности других элементов изза слабо развитой корневой системы.

Растениям жизненно необходим магний для образования хлорофилла, где он фактически является единственным металлом и в этом смысле уникален. Много магния в семенах растений. Магний часто обгоняет кальций по содержанию в растениях, он легко переносится из одной части растения в другую, и осветление зеленой окраски листьев, особенно нижних, может быть свидетельством недостатка магния. Магний составляет 2,7 % молекулы хлорофилла и является носителем фосфатов. Магний увеличивает синтез белка и содержание крахмала в картофеле.

Магний активизирует физиологические процессы в растениях, повышает устойчивость к засухе, увеличивает содержание белкового азота. Хорошее обеспечение магнием ускоряет образование углеводов, усиливает восстановительные процессы – усиливается накопление эфирных масел, жиров и других восстановленных соединений.

Источник

Adblock
detector