Меню

Водно физические свойства почвы формы почвенной влаги

Водно-физические свойства почв

Влажность почвы (В)характеризует содержание влаги (воды) в почве.Выражается в % от массы сухой почвы. В % от объема почвы — объемная влажность.

Влажность почвы (В) можно найти из простого соотноше­ния:

,

где — масса воды; mn — масса сухой почвы.

Объемная влажность почвы определяется отношением:

,

где — объем воды в почве; Vn — объем почвы.

Относительная влажность определяется при сравнении влажностей, определенных в разные сроки.

Водоудерживающая способность свойство почвы удержи­вать влагу. Обусловлена сорбционными, капиллярными и не­которыми другими силами.

Влагоемкость— количество воды, характеризующее водоудерживающую способность почвы.

Максимальная адсорбционная влагоемкость (МАВ) наи­большее количество прочносвязанной воды. Эта влага недо­ступна для растений.

Максимальная гигроскопичность (МГ)— наибольшее ко­личество влаги, которую почва может сорбировать из возду­ха, почти насыщенного водяным паром (95%). Влага недо­ступна для растений.

Влажность устойчивого завядания растений (ВЗ) влаж­ность, при которой растения начинают обнаруживать призна­ки завядания, не исчезающие при перемещении растений в атмосферу, насыщенную водяными парами; нижний предел содержания доступной растениям почвенной влаги.

Влажность разрыва капиллярной связи (ВРК) — влажность почвы, при которой подвижность капиллярной влаги в процессе иссушения резко уменьшается.

Предельно полевая влагоемкость (ППВ) указывает на ко­личество воды, которое однородная по механическому соста­ву почва удерживает сорбционными и капиллярными силами при глубоком (>3 м) залегании грунтовых вод или верхо­водки. Она определяется после полного насыщения почвы водой и свободного стекания гравитационной влаги при отсут­ствии трансформации и испарения влаги с поверхности почв. Это очень важный показатель, его используют при расчетах избыточного количества влаги, которое необходимо удалить при осушительных мероприятиях. В засушливых районах орошение следует проводить до влажности, равной ППВ, так как влага сверх этого количества не удерживается верх­ними слоями почв и будет бесполезно теряться. Оптималь­ный для роста и развития растений диапазон доступной вла­ги находится в пределах 0,6-0,8 ППВ.

Разница между ППВ и ВЗ характеризует, по данным Н.А. Качинского, диапазон продуктивной влаги. По данным А.М. Шульгина, оптимальные запасы продуктивной влаги в метровом слое почвы находятся в пределах 100-200 мм. Запас влаги больше 250 мм характеризуется как избыточный, а менее 50 мм — недостаточный.

Динамическая влагоемкость (ДВ) — максимальное коли­чество воды, которое почва может длительно удерживать после полного насыщения и стекания свободной гравитацион­ной влаги в условиях данного положения грунтовых вод, при отсутствии трансформации и испарения с поверхности.

Водовместительность (ВВ) — количество воды, соответствующее полному заполнению почвенных пор и трещин влагой. ВВ — показатель непостоянный и изменяется в зависи­мости от положения грунтовых вод. Он всегда больше пока­зателя ППВ и при высоком залегании грунтовых вод прибли­жается к ДВ.

Для расчета запасов различных категорий влаги необхо­димо иметь исходные данные о влажности (В) почвы (% к массе почвы), плотности в естественном сложении (dec) и мощности слоя почвы (h, см), для которого рассчиты­вается это содержание. Тогда количество влаги (W) опреде­ляется произведением

Водопроницаемость— способность почвы воспринимать и пропускать через себя воду. Водопроницаемость можно оце­нить по шкале Н.А. Качинского, представленной в табл. 15.

Водопроницаемость почв тяжелого механического состава

Источник

Водно-физические свойства почвы. Формы почвенной влаги.

Земледелие

Факторы жизни растений и законы земледелия

Факторы жизни растений. Космические (свет, тепло), земные (вода, воздух, зольные элементы). Законы земледелия есть не то иное, как выражение законов природы, проявляющиеся в результате возделывания человеком с/х культур. Они раскрывают связи растений с усл-ми внеш.среды. опр-т пути развития земледелия, к-е должны осущ-ся в строгом соотв-и с этими законами. 9 законов: Закон автотрофности зеленых растений (Гунар, 1969), закон незаменимости и равнозначности ф.ж.р. (Вильямс, 1932), Закон ограниченного фактора, минимума (Либих, 1840), Закон минимума, оптимума и максимума ( Ракс, 19в), Закон совокупного дей-я ф-в жизни растений, или закон возд-я ф-в (Митчсрих, Либшер), Закон возврата веществ в почву (Либих, 1840), Закон плодосмена (Павлов, 1838), Закон возрастания плодородия (Панников), Закон убывающего плодородия (Тюрго).

2. Основные пути окультуривания почвы: биологический, агрохимический и агрофизический

Окультуривание – процесс целенаправленного изменения св-в почвы в + сторону путем применения приемов воздел-я на почву. Окультуренность – достигнутый данной почвой уровень основ-х ее св-в, к-е хар-т ее плодородие. Агрофизический метод окультур-я – вкл-т все приемы обр-ки почвы, приемы регулирования теплового, водного, воздушного, пищевого режима, все виды мелиорации, физ-е методы создания стр-ры почвы. Биологический метод — приемы, направленные на обогащение почвы гумусом и биологическим азотом. Это осуществляется при посеве многолетних трав (бобовых и травосмесей — злаковых и бобовых), сидератов, правильного подбора и соотношения сельскохозяйственных культур в севообороте.
Химический метод направлен на увеличение количества элементов питания, доступных для растений, путем внесения в почву минеральных удобрений и на улучшение химических свойств почвы, связанных с неблагоприятной реакцией (известкование, гипсование почв).

Водный и воздушный режимы почвы и их регулирование

Водным режимом почвы называют совокупность всех процессов поступления влаги в почву, ее передвижения, удержания и расхода. Выделяют несколько основных типов водного режима: застойный (мерзлотный) — тундра, промывной – тропики, субтропики, периодически промывной – лесостепная зона, непромывной — черноземов, каштановых, бурых почв и сероземов, выпотной — в засушливых районах. Регулирование – осушение, снегозадержание, щелевание, кротование, лункование, гребневание, обводнение. ВОЗДУШНЫЙ РЕЖИМ ПОЧВЫ, совокупность всех явлений, определяющих поступление воздуха в почву, передвижение в ней и расход, обмен газами между почвой, воздухом, твердой и жидкой фазами почвы, потребление и выделение отдельных газов живым населением почвы. Регулирование – разрушение почвенной корки, поддержание в рыхлом состоянии, приемы, направл-е на улучшение поступления воздуха.

Водно-физические свойства почвы. Формы почвенной влаги.

Почва состоит из твердой, жидкой и газообразной фаз. Твердая фаза включает минеральные вещества, живые и мертвые орга­низмы. Жидкая фаза состоит из воды, расположенной в порах и пустотах почвы и органических веществах. Га­зообразная фаза — воздух, заполняющий все пустоты и поры, свободные от воды. Плотность — масса твердой фазы почвы в единице объема (т/м3). Объемная масса — масса почвы в единице ее объема с ненарушенной структурой в сухом состоянии (т/м3). Пористость (скваж­ность) объем пор между частицами твердой фазы почвы в единице ее объема в процентах или долях объ­ема почвы; Почвенная влага в парооб­разной, гигроскопической, пленочной, капиллярной и гравитационной формах. Парообразная вода дви­жется, как газ, из мест с большей упругостью пара к местам с меньшей упруго­стью и способна переходить в другие формы. Она недо­ступна корневой системе растений. Гигроскопическая влага образуется на поверхности частиц при поглощении поч­вой из воздуха паров воды. Пленочная вода обволакивает почвенные частицы тонким слоем поверх гигроскопической и удерживается молекулярными силами с большой силой и недоступна растениям. Капиллярная влага заполняет все мелкие поры (ка­пилляры) и передвигается в любом направлении от мест с более высоким увлажнением к местам с меньшей влаж­ностью под действием сил поверхностного натяжения, не подчиняясь силам гравитации. Она доступна растениям. Гравитационная влага заполняет в почве крупные по­ры и пустоты, она подчиняется силам гравитации. Содер­жится в почве после полива, обильных дождей, затем просачивается вглубь, уходя за пределы расположения корневой системы, или переходит в состояние капилляр­ной влаги. Она доступна растениям. Полная влагоемкость (ПВ) — наибольшее количест­во воды, которое может содержаться в почве при усло­вии полного заполнения всех пустот и пор. Наименьшая влагоемкость (НВ) — наибольшее ко­личество подвешенной воды, которое может удержаться в почве после полива. Капиллярная влагоемкость (KB) — наибольшее ко­личество капиллярно-подпертой влаги, которое может содержаться в почве. Влажность разрыва капилляров (ВРК) — влажность, при которой подвешенная влага в процессе испарения теряет сплошность и перестает передвигаться к испаря­ющей поверхности. Влажность устойчивого завядания (ВУ3) — влажность, при которой у растений обнаруживаются признаки завя­дания, не исчезающие при помещении их в атмосферу, насыщенную водяным паром. Продуктивная влага — вода, которая используется растением. Эффективная влага — вода, которая легко использу­ется растением. Водоподъемная способность почвы — способность почвы перемещать влагу по капиллярам от уровня грун­товых

Читайте также:  Способы выращивания растений биология

Источник

Категории, формы и виды почвенной влаги. Водно-физические свойства воды

Вода как фактор плодородия и урожайности растений. Определение водообеспеченности растений. Рассмотрение категорий, видов и форм почвенной влаги. Ознакомление с физико-химическими свойствами воды. Основные виды капиллярной воды и ее распределение.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 10.11.2019
Размер файла 54,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СИБАЙСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Кафедра естественных наук

Категории, формы и виды почвенной влаги. Водно-физические свойства воды

Выполнила: студентка 2 курса

Давлеткиреева Г. А.

д.б.н., доцент Хасанова Р. Ф.

1. Значение воды в почве

2. Категории, формы и виды почвенной влаги

3. Водно-физические свойства воды

Вода — третья составная часть почвы. Она притягивается твердыми частичками почвы и окружает их более или менее толстым слоем, так что воздух образует в воде маленькие пузырьки.

Наиболее обстоятельно изучали состояние воды в почве С. М. Богданов, П. С. Коссович, А. Ф. Лебедев, С. И. Долгов, Н. А. Качинский и А. А. Роде. Ими была разработана классификация форм почвенной воды.

Почвенная вода имеет большое значение, является одним из факторов плодородия и урожайности растений. От содержания и качества воды в почве зависят произрастание растений и деятельность микроорганизмов, процессы почвообразования и выветривания, производственная деятельность человека.

Вода, которая является одним из самых распространенных веществ на земле, играет важную роль во многих процессах, которые протекают в почвах. К таким процессам можно отнести образование новых минералов, выветривание, терморегуляция, различные физико-химические реакции, происходящие в почвенных растворах и т.п. Под влиянием того или иного количества воды, содержащейся в почвах, формируются те или иные их типы.

Вода может влиять не только на процессы формирования почв, но и способствовать их разрушению, к примеру, в случае водной эрозии.

Почвенную влагу можно расценивать как основу жизни на Земле. Так как наземные растения, являющиеся автотрофными организмами и переводящие неорганические вещества в органические под влиянием энергии солнечного света, как для процесса фотосинтеза, так и для всех остальных физиологических процессов нуждаются в воде. Единственным источником снабжения растения водой является влага почвы. Растения расходуют значительное количество воды не только на внутриклеточные физиологические процессы, рост и развитие тканей и органов. Большое количество воды тратится на испарение и транспирацию.

Мне кажется, что тема актуальна, поскольку, до настоящего времени почвенная влага имеет особое значение из-за ее практической значимости для почвоведения и сельского хозяйства.

Исходя из актуальности темы, была определена цель работы: рассмотреть все виды, категории и формы почвенной влаги и изучить физико-химические свойства воды.

Для достижения поставленной цели необходимо решить следующие задачи:

· изучить и понять, что представляет собой почвенная влага;

· рассмотреть категории, виды и формы почвенной влаги;

· ознакомиться с физико-химическими свойствами воды.

В качестве материалов написания курсовой работы использовалась литература по почвоведению, статьи из профессиональных журналов и интернет — ресурсы.

1. Значение воды в почве

Почва как многофазная система способна поглощать и удерживать воду. В ней всегда находится определенное количество влаги. Вода поступает в почву в виде атмосферных осадков, грунтовых вод, при конденсации водяных паров из атмосферы, при орошении.

Почвенная вода является жизненной основой растений, почвенной фауны и микрофлоры, получающих воду главным образом из почвы. От содержания воды в почве зависят интенсивность протекающих в ней биологических, химических и физико-химических процессов, передвижение веществ и формирование почвенного профиля, водно-воздушный, питательный и тепловой режимы, ее физико-механические свойства, то есть, важнейшие показатели почвенного плодородия. Следовательно, почвенная вода оказывает прямое и косвенное влияние на развитие и урожайность растений.

Растения расходуют воду в огромном количестве. Для создания 1 г сухого органического вещества потребляется от 200 до 1000 г воды. Количество воды, затрачиваемое на создание единицы сухого вещества за вегетационный период, называется транcnupaцuoнным коэффициентом. Однако растениями усваивается только часть почвенной влаги, которая удерживается силами, меньшими, чем сосущая сила корней, — продуктивная влага. В процессе фотосинтеза вода вместе с углекислым газом — первичный источник образования органического вещества растений. В воде растворяются питательные вещества, которые с почвенным раствором поступают в растения. Растения нормально развиваются только при постоянном и достаточном количестве влаги в почве. Недостаток, как и избыток, влаги в почве ограничивает продуктивность растений. В этом случае неэффективными становятся различные приемы, направленные на повышение урожаев сельскохозяйственных культур (внесение удобрений, известкование и др.).

Водообеспеченность растений определяется не только количеством поступающей воды в почву, но и ее водными свойствами, способностью почвы впитывать, фильтровать, удерживать, сохранять воду и отдавать ее растению по мере потребления. В одинаковых климатических условиях при равной влажности почвы могут содержать разное количество доступной воды, что зависит от механического состава почв, структурного состояния, содержания гумуса и других показателей, предопределяющих их водные свойства. Поэтому создание благоприятного водного режима в почве — одно из важнейших условий получения высоких и устойчивых урожаев сельскохозяйственных культур в условиях интенсивного земледелия (Дюрягин, 1997).

2. Категории, формы и виды почвенной влаги

Вода в почвах неоднородна. Разные ее порции имеют разные физические свойства (термодинамический потенциал, теплоемкость, плотность, вязкость, удельный объем, химический состав, подвижность молекул, осмотическое давление и т. д.), обусловленные характером взаимного расположения и взаимодействия молекул воды между собой и с другими фазами почвы — твердой, газовой, жидкой. Порции почвенной воды, обладающие одинаковыми свойствами, получили название категорий или форм почвенной воды. (Воронова, 1997)

В истории почвоведения было предложено много классификаций категорий воды, содержащейся в почве. Наиболее современной и полной является классификация, разработанная А. А. Роде (1965), которая приводится ниже. Согласно этой классификации в почвах можно различать следующие пять категорий (форм) почвенной воды.

Твердая вода — лед. Твердая вода в почве — это лед, являющийся потенциальным источником жидкой и парообразной воды, в которую он переходит в результате таяния и испарения. Появление воды в форме льда может иметь сезонный (сезонное промерзание почвы) или многолетний («вечная» мерзлота) характер. Поскольку почвенная вода — это всегда раствор, температура замерзания воды в почве ниже 0°С.

Химически связанная вода (включает конституционную и кристаллизационную). Первая из них представлена гидроксильной группой ОН химических соединений (гидроксиды железа, алюминия, марганца; органические и органоминеральные соединения; глинистые минералы); вторая — целыми водными молекулами кристаллогидратов, преимущественно солей (полугидрат — CaS04*ЅН2O, гипс — CaS04*2H20, мирабилит — Na2S04*10H20). Конституционную и кристаллизационную воду иногда объединяют общим понятием гидратной или кристаллогидратной воды. Эта вода входит в состав твердой фазы почвы и не является самостоятельным физическим телом, не передвигается и не обладает свойствами растворителя.

Парообразная вода. Эта вода содержится в почвенном воздухе порового пространства в форме водяного пара. Одна и та же почва может поглощать различное количество паров воды из атмосферного воздуха, что зависит от упругости пара: чем она больше, т. е. чем ближе припочвенный воздух к состоянию насыщения водяным паром, тем больше количество парообразно поглощенной воды в почве. Вообще говоря, почвенный воздух практически всегда близок к насыщению парами воды, а небольшое понижение температуры почвы приводит к его насыщению и конденсации пара, в результате чего парообразная вода переходит в жидкую. Парообразная вода в почве передвигается в ее поровом пространстве от участков с высокой упругостью водяного пара к участкам с более низкой упругостью (активное движение), а также вместе с током воздуха (пассивное движение).

Читайте также:  Эрозия почвы это плохо

Физически связанная, или сорбированная вода. К этой категории относится вода, сорбированная на поверхности почвенных частиц, обладающих определенной поверхностной энергией за счет сил притяжения, имеющих различную природу. При соприкосновении почвенных частиц с молекулами воды последние притягиваются этими частицами, образуя вокруг них пленку. Удержание молекул воды происходит в данном случае силами сорбции.

Молекулы воды могут сорбироваться почвой как из парообразного, так и из жидкого состояния. Благодаря тому, что молекулы воды не являются энергетически нейтральными, а представляют собой диполи, они обладают способностью притягиваться полюсами друг с другом. Прочность их фиксации наибольшая у границ почвенных частиц. В зависимости от прочности подразделяется на прочносвязанную и рыхлосвязанную.

Прочносвязанная вода — это вода, поглощенная почвой из парообразного состояния. Свойство почвы сорбировать парообразную воду называют гигроскопичностью почв, а поглощенную таким образом воду — гигроскопической (Г). Таким образом, прочносвязанная вода — это вода гигроскопическая. Она удерживается у поверхности почвенных частиц очень высоким давлением — порядка (1-2) * 109 Па, образуя вокруг почвенных частиц тончайшие пленки. Высокая прочность удержания обусловливает полную неподвижность гигроскопической воды. По физическим свойствам прочносвязанная (гигроскопическая) вода приближается к твердым телам. Плотность ее достигает 1,5 — 1,8 г/см3, она не замерзает, не растворяет электролиты, отличается повышенной вязкостью и не доступна растениям.

Рыхлосвязанная (пленочная) вода. Сорбционные силы поверхности почвенных частиц не насыщаются полностью даже в том случае, если влажность почвы достигнет МГ. Почва не может поглощать парообразную воду сверх МГ, но жидкую воду может сорбировать и в большем количестве. Вода, удерживаемая в почве сорбционными силами сверх МГ, — это вода рыхлосвязанная, или пленочная. Сила, с которой она удерживается в почве, измеряется значительно меньшим давлением (по сравнению с водой прочносвязанной) — порядка (1-10)* 105 Па.

Рыхлосвязанная вода также представлена пленкой, образовавшейся вокруг почвенной частицы, но пленкой полимолекулярной. Толщина ее может достигать нескольких десятков и даже сотен диаметров молекул воды. По физическому состоянию рыхлосвязанная вода очень неоднородна, что обусловлено различной прочностью связи молекул различных слоев. Поэтому можно сказать, что она находится в вязко-жидкой форме, т. е. занимает промежуточное положение между водой прочносвязанной и свободной. Рыхлосвязанная (пленочная) вода в отличие от прочно-связанной может передвигаться в жидкой форме от почвенных частиц с более толстыми водяными пленками к частицам, у которых она тоньше, т. е. передвижение этой воды возможно при наличии некоторого градиента влажности и происходит оно очень медленно, со скоростью несколько десятков сантиметров в год. Содержание пленочной воды в почве определяется теми же свойствами почв, что и содержание максимальной гигроскопической. В среднем для большинства почв оно составляет 7-15%, иногда в глинистых почвах достигает 30-35 и падает в песчаных до 3-5%.

Свободная вода. Вода, которая содержится в почве сверх рыхлосвязанной и находится уже вне области действия сил притяжения со стороны почвенных частиц (сорбционных) и является свободной. Отличительным признаком этой категории воды является отсутствие ориентировки молекул воды около почвенных частиц. В почвах свободная вода присутствует в капиллярной и гравитационной формах.

Капиллярная вода. Она удерживается в почве в порах малого диаметра — капиллярах, под действием капиллярных или, как их еще называют, менисковых сил. Возникновение этих сил обусловлено следующими явлениями. Поверхностный слой жидкости по своим свойствам отличается от ее внутренних слоев. Если на каждую молекулу воды внутри жидкости равномерно действуют силы притяжения и отталкивания со стороны окружающих молекул, то молекулы, находящиеся в поверхностном слое жидкости, и испытывают одностороннее, направленное вниз притяжение только со стороны молекул, лежащих ниже поверхности раздела вода — воздух. Силы, действующие вне жидкости, относительно малы и ими можно пренебречь. Таким образом, поверхностные молекулы жидкости находятся под действием сил, стремящихся втянуть их внутрь жидкости. По этой причине поверхность любой жидкости стремится к сокращению, так как любая система стремится к компенсации свободной энергии (к форме сферы). Наличие у поверхностных молекул жидкости, ненасыщенных, неиспользованных сил сцепления является источником избыточной поверхностной энергии, которая также стремится к уменьшению. Это влечет за собой образование на поверхности жидкости как бы пленки, которая обладает поверхностным натяжением, или поверхностным давлением (давлением Лапласа), которое представляет собой разницу между атмосферным давлением и давлением жидкости.

Капиллярная вода по физическому состоянию жидкая. Она высокоподвижна, способна обеспечить восполнение запасов воды в поверхностном горизонте почвы при интенсивном потреблении ее растениями или при испарении, свободно растворяет вещества и перемещает растворимые соли, коллоиды, тонкие суспензии. Все мероприятия, направленные на сохранение воды в почве или пополнение ее запасов (при орошении), связаны с созданием в почве запасов именно капиллярной воды с уменьшением ее расхода на физическое испарение.

Капиллярная вода подразделяется на несколько видов: капиллярно-подвешенную, капиллярно-подпертую, капиллярно-посаженную.

Капиллярно-подвешенная вода заполняет капиллярные поры при увлажнении почв сверху (после дождя или полива). При этом под промоченным слоем всегда имеется сухой слой, т. е. гидростатическая связь увлажненного горизонта с постоянным или временным горизонтом подпочвенных вод отсутствует. Вода, находящаяся в промоченном слое, как бы «висит», не стекая, в почвенной толще над сухим слоем. Поэтому она и получила название подвешенной. вода растение почвенный влага

В природных условиях в распределении капиллярно-подвешенной воды по профилю почв всегда наблюдается постепенное уменьшение влажности с глубиной.

Подвешенная вода удерживается в почвах достаточно прочно, но до определенного предела, обусловленного разностью давлений, создаваемой в менисках верхней и нижней поверхностей водного слоя. Если этот предел разницы давлений превышен, начинается стекание воды. Капиллярно-подвешенная вода может передвигаться как в нисходящем направлении, так и вверх, в направлении испаряющейся поверхности. При активном восходящем движении воды в почвах близ поверхности происходит накопление веществ, содержащихся в растворенном виде в почвенном растворе. Засоление почв в поверхностных горизонтах обязано во многом данному явлению. Происходит это в том случае, если в почвах в пределах промачиваемого с поверхности слоя имеется горизонт скопления легкорастворимых солей или если полив почв осуществляется минерализованными водами (Воронова, 1997).

3. Водно-физические свойства воды

Водный режим почвы зависит не только от количества атмосферных осадков, но и в значительной мере от водных свойств самой почвы. К главнейшим водным свойствам относятся водопроницаемость, водоподъемная способность (или капиллярность), влагоемкость.

Водопроницаемость — это способность почвы впитывать и пропускать через себя воду. Водопроницаемость измеряется объемом воды, протекающей через единицу площади поверхности почвы в единицу времени, выражается в мм водного столба в единицу времени. Процесс водопроницаемости включает впитывание влаги и ее фильтрацию. Впитывание происходит при поступлении воды в почву, не насыщенную водой, а фильтрация начинается тогда, когда большая часть пор почвы заполняется водой. Впитывание воды обусловлено сорбционными и капиллярными силами, фильтрация — силой тяжести.

Водопроницаемость зависит от механического состава, структуры (у структурных почв выше, чем у бесструктурных), содержания гумусовых веществ (в целом от общего объема пор в почве и их размера), а также от состава поглощенных катионов: натрий уменьшает водопроницаемость, а кальций — увеличивает. В легких по механическому составу почвах поры крупные и водопроницаемость всегда высокая. В почвах тяжелого механического состава с глыбисто-пылеватой структурой и плотных бесструктурных почвах водопроницаемость низкая. После оструктуривания такие почвы в несколько раз улучшают фильтрационную способность (суглинистые и глинистые почвы, обладающие водопрочной комковато-зернистой структурой, также отличаются высокой водопроницаемостью).

Читайте также:  Чем подкормить цветники осенью

Хорошо водопроницаемыми считаются почвы, в которых вода в течение первого часа проникает на глубину до 15 см. В средневодопроницаемых почвах вода за первый час проходит от 5 до 15 см, а в слабоводопроницаемых — до 5 см. От этого свойства зависит степень использования водных ресурсов. При слабой водопроницаемости часть атмосферных осадков или оросительной воды стекает по поверхности, что приводит к непродуктивному расходованию влаги, могут происходить вымокание культур, застаивание воды на поверхности и развиваться эрозия почвы. При очень высокой водопроницаемости не создается хороший запас воды в корнеобитаемом слое почвы, а в орошаемом земледелии наблюдается большая потеря на полив.

Водоподъемная способность — свойство почвы поднимать содержащуюся в ней влагу за счет капиллярных сил (вода в почвенных капиллярах образует вогнутый мениск, на поверхности которого создается поверхностное натяжение). Высота капиллярного поднятия воды зависит от диаметра капилляров: чем они тоньше, тем выше поднятие, и наоборот. Поэтому водоподъемная способность растет от песчаных почв к суглинистым и глинистым. Максимальная высота подъема воды над уровнем грунтовых вод для песчаных почв 0,5 — 0,8 м, для суглинистых — 2,5 — 3,5 м, в глинистых почвах — 3,0 — 6,0 м. Скорость подъема зависит от размера пори вязкости воды, обусловливаемой ее температурой. По крупным порам вода поднимается быстрее, чем в почвах с тонкими капиллярами. С повышением температуры уменьшается вязкость воды, поэтому скорость ее капиллярного поднятия повышается. Растворенные в воде соли также оказывают значительное влияние на скорость капиллярного подъема. Минерализованные грунтовые воды в отличие от пресных поднимаются к поверхности по капиллярам с большей скоростью.

Благодаря капиллярным явлениям и водоподъемной способности почв грунтовые воды участвуют в дополнительном снабжении растений водой, особенно в засушливые годы, развитии восстановительных процессов и засолении почвенного профиля.

Влагоемкость — способность почвы впитывать и удерживать определенное количество воды. Выражается в % к весу сухой почвы. Эта способность зависит от гранулометрического состава, содержания гумуса, состава поглощенных катионов. Высокая влагоемкость характерна для глинистых почв, богатых коллоидами, с высоким содержанием гумуса. Высокой влагоемкостью обладают почвы, содержащие известь, хлориды, слабовлагоемкие песчаные почвы.

Различают следующие виды влагоемкости: максимальную гигроскопическую, капиллярную, полевую и полную.

Максимальная гигроскопическая влагоемкость (МГВ) — это наибольшее недоступное растениям количество влаги (мертвый запас влаги), которое прочно удерживается молекулярными силами почвы (адсорбцией). Величина этой влагоемкости зависит от суммарной поверхности частиц, а также содержания гумуса: чем больше в почве илистых частиц и гумуса, тем она выше.

Капиллярная влагоемкость — максимальное количество воды (капиллярно-подпертой влаги), которое удерживается в почве над уровнем грунтовых вод при заполнении капиллярных пор. Кроме свойств почвы, величина капиллярной влагоемкости зависит от высоты над зеркалом грунтовых вод. Вблизи грунтовых вод она наибольшая, а с поднятием к поверхности уменьшается и на границе капиллярной каймы равна наименьшей влагоемкости.

Наименьшая влагоемкость (НВ), или предельная полевая влагоемкость (ППВ) — это наибольшее количество воды, которое остается в почве после ее полного увлажнения и свободного стекания избыточной воды. Величина наименьшей влагоемкости зависит от гранулометрического и минералогического состава, плотности и пористости почвы. Она соответствует величине капиллярно-подвешенной воды. Наименьшая влагоемкость — важнейшая характеристика водных свойств почвы, дающая представление о наибольшем количестве воды, которое почва способна накопить и длительное время удерживать. Она составляет (в % от веса абсолютно сухой почвы): для песчаных — 4 — 9, супесчаных — 10 — 17, легко- и среднесуглинистых — 18 — 30, тяжелосуглинистых и глинистых — 23 — 40. Наибольшие значения ППВ характерны для гумусированных почв тяжелого механического состава, обладающих хорошо выраженной макро- и микроструктурой.

Полной влагоемкостью (ПВ) называется наибольшее количество воды, которое может вместить почва при полном заполнении всех ее пор водой при отсутствии оттока (численно равна пористости почвы).

Оптимальной влажностью для большинства культурных растений условно принято считать влажность, приблизительно равную 50 % полной влагоемкости данной почвы. Для большинства зерновых культур оптимальная влажность составляет 30 — 50 %, для зернобобовых — 50 — 60 %, технических растений и корнеплодов — 60 — 70 %, сеяных луговых трав (злаков и бобовых) — 80 — 90 % ПВ почвы. Поэтому оптимальная влажность почвы для разных растений и почв должна несколько отклоняться от условно принятой.

Полевая влажность (WП) характеризует содержание влаги в почве на данный момент, выражается в % к массе сухой почвы.

Из общего количества влаги, содержащейся в почве при ее полном насыщении, выделяют такие пограничные значения влажности, при которых меняются поведение воды и ее доступность растениям. Границы значений влажности, характеризующие пределы появления различных категорий почвенной влаги, называются почвенно-гидрологическими константами. Наиболее широко используются следующие: максимальная гигроскопическая влагоемкость, влажность разрыва капилляров (ВРК), влажность завядания (ВЗ), наименьшая влагоемкость (НВ) и полная влагоемкость (ПВ).

При влажности НВ вся система капиллярных пор заполнена водой, поэтому создаются оптимальные условия влагообеспеченности растений. По мере испарения и потребления воды растениями теряется сплошность заполнения водой капилляров, уменьшаются подвижность воды и доступность ее растениям. Влажность, при которой происходит разрыв сплошного заполнения капилляров водой, называется влажностью разрыва капилляров (ВРК). Это важная гидрологическая константа почвы, характеризующая нижний предел оптимальной влажности. Для суглинистых и глинистых почв ВРК составляет 65 — 70 % НВ.

Влажность завядания растений — это почвенная влажность, при которой у растений появляются признаки завядания, не исчезающие при помещении растений в атмосферу, насыщенную водяными парами, т.е. это нижний предел доступной растениям влаги (численно равна 1,5 * МГ). Влажность завядания зависит от вида растений и свойств почвы. Чем тяжелее механический состав почвы, чем больше в ней органического вещества, тем выше ВЗ. В среднем она составляет: в песках — 1 — 3 %, в супесях — 3 — 6 %, в суглинках — 6 — 15 %, в торфяных почвах — 50 — 60 %.

Для растений доступна только та часть почвенной влаги, которая может быть усвоена в процессе жизнедеятельности. Она называется продуктивной влагой, так как используется для образования урожая и вычисляется как разница между ППВ и ВЗ. Зная количество продуктивной влаги, можно рассчитать урожай растений (1 % продуктивной влаги дает 1 ц зерна) и дефицит влаги.

Продуктивный запас влаги (ПЗВ) в определенном слое (или почвенном профиле) вычисляют, зная общий запас воды (ОЗВ) в этом слое и запас труднодоступной воды (ЗТВ). Запас воды определяют для каждого почвенного горизонта по формуле:

где В — запас воды, м 3 /га для слоя Н, WП — полевая влажность, dV — объемная плотность почвы, г/см 3 , Н — мощность горизонта, см. Запас труднодоступной воды рассчитывают по той же формуле, но вместо WП берут ВЗ. Для пересчетов запасов воды, выраженных в м 3 /га, в мм их умножают на 0,1 (запас воды в 1 мм водного столба на площади 1 га равен 10 т воды). Разность между этими показателями дает продуктивный запас влаги: ПЗВ = ОЗВ — ЗТВ. Оценка запасов продуктивной влаги представлена в таблице 1(Белобров, 2004).

Источник

Adblock
detector