Водный баланс и свойства почвы, типы режима и пути его регулирования
Всем, кто занимается земледелием, рекомендуется уделять внимание водным свойствам почвы. Почвоведы отмечают важность вопросов поступления, движения и накопления влаги. С ними связаны особенности накопления, перемещения и вымывания органических веществ, которые являются продуктами почвообразовательных процессов. Под водным режимом понимают совокупность всех процессов попадания влаги в структуру грунта, ее состояние в почве и процесс расходования.
Категории почвенной воды, характеристика, доступность растениям
Вода в структуре земли имеет неоднородную структуру, а потому существенно отличается по физическим характеристикам.
Твердая
Эта форма воды представляет собой лед. Она считается потенциальным источником жидкой и парообразной влаги. Образование льда отличается сезонным или многолетним характером. При температуре больше 0 градусов он становится жидким или парообразным.
Химически связанная
Данная разновидность воды присутствует в составе минералов в форме гидроксильной группы или целых молекул. В первом случае влага называется конституциональной. Она удаляется из грунта с помощью прокаливания до 400-800 градусов. Вода, представленная в форме молекул, называется кристаллизационной. Ее удается удалить путем нагревания земли до 100-200 градусов.
Химически связанная вода считается важнейшим параметром, по которому можно понять состав почвы. Это вещество присутствует в составе твердой фазы земли и не относится к самостоятельным физическим телам. Состав не перемещается, не имеет характеристик растворителя и не доступен растениям.
Парообразная
Это вещество присутствует в почвенном воздухе и в порах в виде водяного пара. Парообразная влага способна перемещаться с током почвенного воздуха и зависит от влагоемкости грунта.
Хотя объем парообразной влаги составляет не больше 0,001 % массы грунта, она очень важна для правильного перераспределения почвенной влаги и помогает защитить корневые волоски культур от пересыхания. При конденсации пар трансформируется в жидкость.
Сорбированная
Это вещество формируется в результате сорбции парообразной и жидкой воды на поверхности твердых элементов грунта. Его также называют физически связанным. Такая вода делится на прочносвязанную и рыхлосвязанную. Эта градация базируется на прочности связи с твердой фазой земли.
Прочносвязанная или гигроскопическая вода формируется вследствие адсорбции молекул из парообразного состояния на поверхности почвы. Способность земли пропускать и сорбировать парообразную влагу называется гигроскопичностью. Прочносвязанная вода фиксируется на поверхности повышенным давлением. При этом на почвенных частицах формируется тонкая пленка.
Во время соприкосновения почвенных частиц с водой наблюдается ее дополнительное поглощение, и формируется рыхлосвязанная вода. Она не так прочно фиксируется и медленно передвигается от фрагментов с большей пленкой к частицам с меньшей.
Свободная
Эта вода располагается в активном слое грунта поверх рыхлосвязанной. Она не связана с почвенными фрагментами силами притяжения. Свободная вода в почве может быть капиллярной и гравитационной.
Капиллярная
Этот тип влаги располагается в тонких капиллярах земли. Он перемещается под воздействием капиллярных сил, которые появляются на поверхности раздела всех фаз – твердой, жидкой и газообразной. Этот тип влаги считается самым доступным для растений.
Водные свойства почв
Грунты отличаются определенными свойствами и характеристиками. Это обязательно стоит учитывать огородникам.
Водоудерживающая способность
Под этим термином понимают способность грунта удерживать влагу, связанную с влиянием сорбционных и капиллярных сил. Максимальный объем воды, который может задерживать грунт определенными силами, именуют влагоемкостью.
В зависимости от формы, в которой находится влага, удерживаемая грунтом, выделяют полную, капиллярную, наименьшую и максимально-молекулярную влагоемкость.
Водопроницаемость почв
В это понятие входит способность земли поглощать и пропускать через себя воду. Выделяют 2 этапа водопроницаемости:
- Впитывание – представляет собой поглощение воды грунтом и ее прохождение в ненасыщенной влагой почве.
- Фильтрация – под этим термином понимают движение влаги в почве под воздействием силы тяжести и градиента напора при полноценном насыщении грунта влагой.
Водопроницаемость измеряют объемом воды, который протекает через определенную единицу площади грунта в единицу времени при напоре воды 5 сантиметров. Показатель постоянно меняется. Баланс водопроницаемости определяется гранулометрическим составом и химическими характеристиками грунта. Также на него влияют их структура, плотность, влажность.
Грунты тяжелого гранулометрического состава обладают более низкой водопроницаемостью по сравнению с легкими почвами. Наличие в составе земли натрия или магния, которые вызывают ее быстрое набухание, делает структуру почти водонепроницаемой.
Водоподъемная способность
Под этим термином понимают способность грунта провоцировать восходящее передвижение влаги, которая в нем содержится, за счет воздействия капиллярных сил. На высоту подъема влаги в грунте и темпы ее передвижения влияют гранулометрический и структурный составы почвы.
Также темпы подъема влаги определяются степенью минерализации грунтовых вод. Высокоминерализованные воды отличаются меньшей высотой и скоростью подъема. Но высокое расположение минерализованных вод увеличивает риск быстрого засоления грунта. Эта опасность возникает при их расположении на уровне 1-1,5 метра.
Типы водного режима почв
Водные режимы имеют самые разные виды, каждый из которых отличается определенными особенностями.
Мерзлотный
Этот водный режим распространен в условиях многолетней мерзлоты. При этом мерзлая часть почвы отличается водонепроницаемостью. Она представляет собой водоупор, над которым располагается надмерзлотная верховодка. Она приводит к насыщенности верхней части оттаявшего грунта водой. Такой режим регулирования наблюдается на протяжении периода вегетации.
Промывной
Согласно теории, этот режим наблюдается в регионах, в которых общее количество годовых осадков превышает их испаряемость. Весь почвенный профиль каждый год подвергается сквозному промачиванию до грунтовых вод и быстрому выщелачиванию продуктов почвообразования. Под воздействием промывного типа образуются красноземы, желтоземы, подзолистые грунты.
Если наблюдается близкое расположение грунтовых вод, а почвы отличаются слабой водопроницаемостью, образуется болотный подтип водного режима. Это приводит к формированию болотных и подзолисто-болотных видов грунта.
Периодически промывной
Для этой разновидности характерна средняя сбалансированность осадков и испаряемости. При этом ограниченное промачивание грунта в сухие годы чередуется со сквозным промачиванием во влажные периоды.
Промывание земель избыточным количеством осадков происходит 1-2 раза в течение нескольких лет. Эта разновидность водного режима характерна для серых лесных грунтов, выщелоченных и оподзоленных черноземов. Почвы отличаются неустойчивой обеспеченностью влагой.
Непромывной
Этот режим отличается распределением осадков, в основном, в верхних слоях грунта. При этом он не достигает грунтовых вод. Обмен влагой осуществляется с помощью ее перемещения в виде пара. Этот тип водного режима характерен для степных типов грунта. К ним относятся каштановые, серо-бурые пустынные, бурые полупустынные почвы и черноземы.
В таких грунтах наблюдается уменьшение числа осадков и увеличение испаряемости. Для оценки водного режима разработан коэффициент увлажнения. В данном случае он снижается с 0,6 до 0,1.
Запасы воды, которые были накоплены в степном грунте в течение весны, активно тратятся на транспирацию и физическое испарение. К приходу осени они становятся очень низкими. В пустынных и полупустынных районах заниматься земледелием без орошения невозможно.
Выпотной
Этот режим засоленных почв характерен для степной, пустынной и полупустынной зон. Он отличается высоким залеганием грунтовых вод. Почвы, обладающие хорошей водопроницаемостью, характеризуются восходящими потоками влаги. При повышенной минерализации грунтовых вод в землю проникают легкорастворимые соли, что провоцирует ее засоление.
Ирригационный
Этот водный режим формируется при дополнительном увлажнении грунта оросительными водами. При правильном нормировании воды для полива удается получить непромывной тип с наибольшим коэффициентом увлажнения, близким к единице.
Как регулировать водный режим
Правильное регулирование водного режима имеет большое значение в условиях интенсивного земледелия. При этом важно применять особые приемы, которые направлены на устранение неблагоприятных факторов.
Чтобы добиться нужных результатов, важно стараться уравновешивать объем влаги, которая поступает в почву, с ее расходом на физическое испарение. Как следствие, коэффициент увлажнения должен быть максимально приближен к 1.
Регулирование водного режима осуществляют на базе учета климатических и почвенных условий. Большое значение имеет также потребность культур во влаге.
Чтобы улучшить водный режим слабодренированного грунта зон избыточного увлажнения, необходимо планировать поверхность и нивелировать разные типы понижений. Именно в этих местах наблюдаются застои влаги.
В почве с временным избыточным увлажнением требуется удалять лишнюю влагу. Для этого с осени рекомендуется делать гребни. Болотные почвы требуют осушительных мелиораций.
Водные свойства почвы имеют большое значение для успешного земледелия. Потому так важно ознакомиться с ними перед высадкой тех или иных растений.
Источник
Водные свойства почвы пути их регулирования
Глава 7. ВОДНЫЕ СВОЙСТВА И ВОДНЫЙ РЕЖИМ ПОЧВ
§1. Значение воды в почве
Почва как многофазная система способна поглощать и удерживать воду. В ней всегда находится определенное количество влаги. Вода поступает в почву в виде атмосферных осадков, грунтовых вод, при конденсации водяных паров из атмосферы, при орошении.
Почвенная вода является жизненной основой растений, почвенной фауны и микрофлоры, получающих воду главным образом из почвы. От содержания воды в почве зависят интенсивность протекающих в ней биологических, химических и физико-химических процессов, передвижение веществ и формирование почвенного профиля, водно-воздушный, питательный и тепловой режимы, ее физико-механические свойства, то есть, важнейшие показатели почвенного плодородия. Следовательно, почвенная вода оказывает прямое и косвенное влияние на развитие и урожайность растений.
Растения расходуют воду в огромном количестве. Для создания 1 г сухого органического вещества потребляется от 200 до 1000 г воды. Количество воды, затрачиваемое на создание единицы сухого вещества за вегетационный период, называется транcnupaцuoнным коэффициентом. Однако растениями усваивается только часть почвенной влаги, которая удерживается силами, меньшими, чем сосущая сила корней, – продуктивная влага. В процессе фотосинтеза вода вместе с углекислым газом – первичный источник образования органического вещества растений. В воде растворяются питательные вещества, которые с почвенным раствором поступают в растения. Растения нормально развиваются только при постоянном и достаточном количестве влаги в почве. Недостаток, как и избыток, влаги в почве ограничивает продуктивность растений. В этом случае неэффективными становятся различные приемы, направленные на повышение урожаев сельскохозяйственных культур (внесение удобрений, известкование и др.).
Водообеспеченность растений определяется не только количеством поступающей воды в почву, но и ее водными свойствами, способностью почвы впитывать, фильтровать, удерживать, сохранять воду и отдавать ее растению по мере потребления. В одинаковых климатических условиях при равной влажности почвы могут содержать разное количество доступной воды, что зависит от механического состава почв, структурного состояния, содержания гумуса и других показателей, предопределяющих их водные свойства. Поэтому создание благоприятного водного режима в почве – одно из важнейших условий получения высоких и устойчивых урожаев сельскохозяйственных культур в условиях интенсивного земледелия.
§2. Формы воды в почве
Для определения обеспеченности растений доступной водой необходимо знать формы и взаимосвязи воды в почве.
Вода в почве может находиться во всех трех состояниях: в парообразном, твердом и жидком. Парообразная вода содержится в почвенном воздухе и поступает из атмосферы, а также образуется в почве при испарении жидкой воды и льда, свободно передвигается в почве из более влажных мест в менее увлажненные (при условии одной и той же температуры во всех горизонтах почвы), а из горизонтов с большей температурой — в участки с меньшей температурой. Практическое значение парообразной почвенной влаги в земледелии ничтожно, однако в почвах засушливых районов за счет водяного пара в зимнее время в метровом слое аккумулируется до 10 –14 мм влаги. Твердая вода непосредственно не используются растениями, хотя и может служить резервом доступной влаги (жидкой и газообразной).
Жидкая и парообразная вода в почве подвергается воздействию различных природных сил: гравитационных, молекулярного притяжения твердой фазы почвы и силы притяжения между молекулами воды. В зависимости от преобладания одной из этих сил почвенная вода имеет различную подвижность и доступность для растений.
Выделяют следующие основные формы почвенной воды, различающиеся между собой прочностью связи с твердой фазой почвы и степенью подвижности: кристаллизационную, гигроскопическую, пленочную, капиллярную, гравитационную.
Кристаллизационная вода – это химически связанная вода, входящая в состав минералов либо в виде гидроксильных групп (Fе(ОН)з, А1(ОН)з, Са(ОН)2), либо в виде целых молекул (например, гипса (CaS04 * 2 Н20), мирабилита (Na2SО4 * 10 Н2О) и др.); выделяется при нагревании почвы до температуры 400 – 600 °С. Химически связанная влага не принимает непосредственного участия в физических процессах, протекающих в почве, и растениям недоступна.
Гигроскопическая влага. Часть воды, находящейся в воздухе в виде пара, поглощается поверхностью почвенных частиц, образуя гигроскопическую влагу – одну из форм так называемой сорбционной воды, т.е. удерживаемой силами сорбции. Содержание этой влаги зависит от: относительной влажности и температуры воздуха (чем влажнее воздух и ниже температура, тем ее больше в почве), содержания органического вещества (чем богаче почва гумусовыми веществами, тем ее больше) и механического состава (при прочих равных условиях почва суглинистая или глинистая всегда будет содержать больше гигроскопической влаги, чем почва песчаная или супесчаная). Наибольшее количество гигроскопической воды, поглощенное почвой и выраженное в процентах от массы сухой почвы, называется максимальной гигроскопичностью (МГ). Такое количество влаги почва может поглотить из воздуха, имеющего относительную влажность, близкую к 100 %. Максимальная гигроскопическая влажность – величина, постоянная для каждой почвы, так как она определяется при постоянных температуре и относительной влажности воздуха. Может колебаться для песчаных почв от 0,1 до 1,5 в глинистых, гумусированных – до 10 – 15, в органогенных – до 20 – 40 % от веса сухой почвы. Молекулы гигроскопической воды удерживаются на поверхности почвенных частиц с большой силой, поэтому удалить их можно лишь продолжительным нагреванием почвы при 105 °С. Следовательно, для растений гигроскопическая влага недоступна.
МГ используют для выяснения мертвого запаса влаги (МЗВ) в почве – количество влаги в почве, при котором растения начинают устойчиво завядать, так как эта вода не может быть использована растениями. Он равен 1,5 • МГ, т.е. в состав мертвого запаса влаги входит еще пленочная вода.
Пленочная вода покрывает почвенные частицы следующим за гигроскопической влагой слоем, также удерживается силами межмолекулярного притяжения, но слабее, поэтому является частично доступной (для взрослых растений). Кристаллизационная, гигроскопическая и пленочная формы воды относятся к прочносвязанной воде и составляют МЗВ.
Влага, которая содержится в почве сверх мертвого запаса, называется продуктивной. Благодаря этой влаге формируется урожай сельскохозяйственных растений.
Свободная вода не связана силами притяжения с почвенными частицами, доступна растениям, передвигается в почве под действием капиллярных и гравитационных сил. В связи с этим выделяют капиллярную и гравитационную воду.
Капиллярная вода заполняет тонкие (капиллярные) поры почвы и передвигается в них под влиянием капиллярных (менисковых) сил. Высота подъема воды тем выше, чем тоньше капилляр. В зависимости от характера увлажнения различают капиллярно- подвешенную и капиллярно-подпертую воду. При увлажнении почвы сверху (атмосферные осадки, оросительные воды) формируется капиллярно-подвешенная вода, не связанная с грунтовыми водами и находящаяся в верхней части профиля почв. Капиллярно-подпертая формируется при увлажнении снизу и поднимается от зеркала грунтовых вод. Почвенный слой, в котором она распространяется, называется капиллярной каймой, и мощность его зависит от водоподъемной способности почвы. Капиллярная вода легкодоступна для растений и является основным источником их водного питания. Разновидностью капиллярной воды является стыковая влага, находящаяся в почвах с атмосферным увлажнением, которая представляет собой влагу, удерживаемую между частицами почвы и не проходящую вниз.
Если почву, в которой все капиллярные поры уже заполнены водой, продолжать увлажнять, то влагой будут заполняться некапиллярные промежутки. Эта влага, свободно передвигающаяся в почве и подчиненная в своем движении силе тяжести, называется гравитационной. Гравитационная влага может передвигаться в почве только из верхних слоев вниз. Просачиваясь вниз, она либо является источником питания грунтовых вод, либо распределяется по толще почвы и переходит в другие формы воды. Гравитационная влага легкодоступна растениям, но избыточна (т.к. мало воздуха и нарушается газообмен) и поэтому непродуктивна. Полное насыщение почвы водой возможно после таяния снега или длительных дождей, однако это явление кратковременное.
Грунтовые воды играют важную роль в водном питании растений. Подходя близко к поверхности почвы, в северных районах они вызывают заболачивание, а в южных – засоление почвы. Критическая глубина залегания грунтовых вод, при которой происходит засоление почв на юге, колеблется в пределах 1,5 – 2,5 м.
§3. Водные свойства почвы и основные почвенно-гидрологические константы
Водный режим почвы зависит не только от количества атмосферных осадков, но и в значительной мере от водных свойств самой почвы. К главнейшим водным свойствам относятся водопроницаемость, водоподъемная способность (или капиллярность), влагоемкость.
Водопроницаемость – это способность почвы впитывать и пропускать через себя воду. Водопроницаемость измеряется объемом воды, протекающей через единицу площади поверхности почвы в единицу времени, выражается в мм водного столба в единицу времени.Процесс водопроницаемости включает впитывание влаги и ее фильтрацию. Впитывание происходит при поступлении воды в почву, не насыщенную водой, а фильтрация начинается тогда, когда большая часть пор почвы заполняется водой. Впитывание воды обусловлено сорбционными и капиллярными силами, фильтрация – силой тяжести.
Водопроницаемость зависит от механического состава, структуры (у структурных почв выше, чем у бесструктурных), содержания гумусовых веществ (в целом от общего объема пор в почве и их размера), а также от состава поглощенных катионов: натрий уменьшает водопроницаемость, а кальций – увеличивает. В легких по механическому составу почвах поры крупные и водопроницаемость всегда высокая. В почвах тяжелого механического состава с глыбисто-пылеватой структурой и плотных бесструктурных почвах водопроницаемость низкая. После оструктуривания такие почвы в несколько раз улучшают фильтрационную способность (суглинистые и глинистые почвы, обладающие водопрочной комковато-зернистой структурой, также отличаются высокой водопроницаемостью).
Хорошо водопроницаемыми считаются почвы, в которых вода в течение первого часа проникает на глубину до 15 см. В средневодопроницаемых почвах вода за первый час проходит от 5 до 15 см, а в слабоводопроницаемых – до 5 см. От этого свойства зависит степень использования водных ресурсов. При слабой водопроницаемости часть атмосферных осадков или оросительной воды стекаетпо поверхности, что приводит к непродуктивному расходованию влаги, могут происходить вымокание культур, застаивание воды на поверхности и развиваться эрозия почвы. При очень высокой водопроницаемости не создается хороший запас воды в корнеобитаемом слое почвы, а в орошаемом земледелии наблюдается большая потеря на полив.
Водоподъемная способность – свойство почвы поднимать содержащуюся в ней влагу за счет капиллярных сил (вода в почвенных капиллярах образует вогнутый мениск, на поверхности которого создается поверхностное натяжение). Высота капиллярного поднятия воды зависит от диаметра капилляров: чем они тоньше, тем выше поднятие, и наоборот. Поэтому водоподъемная способность растет от песчаных почв к суглинистым и глинистым. Максимальная высота подъема воды над уровнем грунтовых вод для песчаных почв 0,5 – 0,8 м, для суглинистых – 2,5 – 3,5 м, в глинистых почвах – 3,0 – 6,0 м.Скорость подъема зависит от размера пори вязкости воды, обусловливаемой ее температурой. По крупным порам вода поднимается быстрее, чем в почвах с тонкими капиллярами.С повышением температуры уменьшается вязкость воды, поэтому скорость ее капиллярного поднятия повышается. Растворенные в воде соли также оказывают значительное влияние на скорость капиллярного подъема. Минерализованные грунтовые воды в отличие от пресных поднимаются к поверхности по капиллярам с большей скоростью.
Благодаря капиллярным явлениям и водоподъемной способности почв грунтовые воды участвуют в дополнительном снабжении растений водой, особенно в засушливые годы, развитии восстановительных процессов и засолении почвенного профиля.
Влагоемкость – способность почвы впитывать и удерживать определенное количество воды. Выражается в % к весу сухой почвы. Эта способность зависит от гранулометрического состава, содержания гумуса, состава поглощенных катионов. Высокая влагоемкость характерна для глинистых почв, богатых коллоидами, с высоким содержанием гумуса. Высокой влагоемкостью обладают почвы, содержащие известь, хлориды, слабовлагоемкие песчаные почвы.
Различают следующие виды влагоемкости: максимальную гигроскопическую, капиллярную, полевую и полную.
Максимальная гигроскопическая влагоемкость (МГВ) – это наибольшее недоступное растениям количество влаги (мертвый запас влаги), которое прочно удерживается молекулярными силами почвы (адсорбцией). Величина этой влагоемкости зависит от суммарной поверхности частиц, а также содержания гумуса: чем больше в почве илистых частиц и гумуса, тем она выше.
Капиллярная влагоемкость – максимальное количество воды (капиллярно-подпертой влаги), которое удерживается в почве над уровнем грунтовых вод при заполнении капиллярных пор. Кроме свойств почвы, величина капиллярной влагоемкости зависит от высоты над зеркалом грунтовых вод. Вблизи грунтовых вод она наибольшая, а с поднятием к поверхности уменьшается и на границе капиллярной каймы равна наименьшей влагоемкости.
Наименьшая влагоемкость (НВ), или предельная полевая влагоемкость (ППВ) – это наибольшее количество воды, которое остается в почве после ее полного увлажнения и свободного стекания избыточной воды. Величина наименьшей влагоемкости зависит от гранулометрического и минералогического состава, плотности и пористости почвы. Она соответствует величине капиллярно-подвешенной воды. Наименьшая влагоемкость – важнейшая характеристика водных свойств почвы, дающая представление о наибольшем количестве воды, которое почва способна накопить и длительное время удерживать. Она составляет (в % от веса абсолютно сухой почвы): для песчаных – 4 – 9, супесчаных – 10 – 17, легко- и среднесуглинистых – 18 – 30, тяжелосуглинистых и глинистых – 23 – 40. Наибольшие значения ППВ характерны для гумусированных почв тяжелого механического состава, обладающих хорошо выраженной макро- и микроструктурой.
Полной влагоемкостью (ПВ) называется наибольшее количество воды, которое может вместить почва при полном заполнении всех ее пор водой при отсутствии оттока (численно равна пористости почвы).
Оптимальной влажностью для большинства культурных растений условно принято считать влажность, приблизительно равную 50 % полной влагоемкости данной почвы. Для большинства зерновых культур оптимальная влажность составляет 30 – 50 %, для зернобобовых – 50 – 60 %, технических растений и корнеплодов – 60 – 70 %, сеяных луговых трав (злаков и бобовых) – 80 – 90 % ПВ почвы. Поэтому оптимальная влажность почвы для разных растений и почв должна несколько отклоняться от условно принятой.
Полевая влажность (WП) характеризует содержание влаги в почве на данный момент, выражается в % к массе сухой почвы.
Из общего количества влаги, содержащейся в почве при ее полном насыщении, выделяют такие пограничные значения влажности, при которых меняются поведение воды и ее доступность растениям. Границы значений влажности, характеризующие пределы появления различных категорий почвенной влаги, называются почвенно-гидрологическими константами. Наиболее широко используются следующие: максимальная гигроскопическая влагоемкость, влажность разрыва капилляров (ВРК), влажность завядания (ВЗ), наименьшая влагоемкость (НВ) и полная влагоемкость (ПВ).
При влажности НВ вся система капиллярных пор заполнена водой, поэтому создаются оптимальные условия влагообеспеченности растений. По мере испарения и потребления воды растениями теряется сплошность заполнения водой капилляров, уменьшаются подвижность воды и доступность ее растениям. Влажность, при которой происходит разрыв сплошного заполнения капилляров водой, называется влажностью разрыва капилляров (ВРК). Это важная гидрологическая константа почвы, характеризующая нижний предел оптимальной влажности. Для суглинистых и глинистых почв ВРК составляет 65 – 70 % НВ.
Влажность завядания растений – это почвенная влажность, при которой у растений появляются признаки завядания, не исчезающие при помещении растений в атмосферу, насыщенную водяными парами, т.е. это нижний предел доступной растениям влаги (численно равна 1,5 * МГ). Влажность завядания зависит от вида растений и свойств почвы. Чем тяжелее механический состав почвы, чем больше в ней органического вещества, тем выше ВЗ. В среднем она составляет: в песках – 1 – 3 %, в супесях – 3 – 6 %, в суглинках – 6 – 15 %, в торфяных почвах – 50 – 60 %.
Для растений доступна только та часть почвенной влаги, которая может быть усвоена в процессе жизнедеятельности. Она называется продуктивной влагой, так как используется для образования урожая и вычисляется как разница между ППВ и ВЗ. Зная количество продуктивной влаги, можно рассчитать урожай растений (1 % продуктивной влаги дает 1 ц зерна) и дефицит влаги.
Продуктивный запас влаги (ПЗВ) в определенном слое (или почвенном профиле) вычисляют, зная общий запас воды (ОЗВ) в этом слое и запас труднодоступной воды (ЗТВ). Запас воды определяют для каждого почвенного горизонта по формуле:
где В – запас воды, м 3 /га для слоя Н, WП – полевая влажность, dV – объемная плотность почвы, г/см 3 , Н – мощность горизонта, см. Запас труднодоступной воды рассчитывают по той же формуле, но вместо WП берут ВЗ. Для пересчетов запасов воды, выраженных в м 3 /га, в мм их умножают на 0,1 (запас воды в 1 мм водного столба на площади 1 га равен 10 т воды). Разность между этими показателями дает продуктивный запас влаги: ПЗВ = ОЗВ – ЗТВ. Оценка запасов продуктивной влаги представлена в таблице 11.
Источник