Выращивание кристаллов кремния
Английское название silicon происходит от латинского silex, что значит “кремень”. Кремний, занимающий на Земле второе место после кислорода по относительному содержанию, составляет 25,7% земной коры по весу.
Кремний, применяемый в микроэлектронике, используется в виде больших высококачественных монокристаллов. Что подразумевается под словом “высококачественный”? На современном этапе развития микроэлектроники допускается наличие не более 10 12 атомов примесей в одном см 3 . Их число должно быть уменьшено до 10 10 см -3 . Так как в кремнии содержится около 5х10 22 атомов/см 3 , то это значит, что допускается наличие только одного случайно попавшего атома примесей на несколько десятков миллиардов атомов кремния. Такая высокая чистота лежит далеко за пределами того, что требуется в исходных материалах, используемых практически в любой другой области промышленности.
Кремний высокой чистоты получается из двух обычных материалов:
· Двуокиси кремния (песок)
В высокотемпературной электрической дуговой печи (при Т
2000 0 С) углерод восстанавливает двуокись кремния до элементарного кремния, конденсирующегося в виде кремния металлургической чистоты (содержит до 10% примеси).
1. Получение металлургического кремния.
( — 13(кВт/ч)/кг (реакция идёт при 1500-1700 О С))
Чистота Si-порошка 95-98%
Такой кремний ещё недостаточно очищен для того, чтобы его можно было использовать в полупроводниковой электронике. Кремний металлургической чистоты очищается путём перевода его в трихлорсилан (SiHCl3), который может быть подвергнут дальнейшей очистке:
2. Получение трихлорсилана
+ хлориды примесей + тепло
SiHCl3 при комнатной темп.- жидкость. После этого проводят фракционную дистилляцию трихлорсилана, что позволяет отделить его от любых других хлоридных соединений.
Очищенный трихлорсилан затем восстанавливается водородом, в результате чего получается твёрдый кремний высокой чистоты:
3. Осаждение из парогазовой смеси поликрист. кремния.
Содержание примесей в нём составляет 10 -6 – 10 -7 ат%. На этом этапе кремний является поликристаллическим. Он состоит из микрокристаллов, ориентированных случайным образом. Поли-Si осаждают на стержень из Si высокой чистоты, чтобы избежать загрязнений. И только после этого переходят к получению больших (диаметр >100-350мм) слитков идеального монокристалла. Для получения монокристаллов столь высокого качества используются в настоящее время главным образом:
· метод зонной плавки.
· метод Степанова (вытягивание из расплава через фильтру).
Метод Чохральского
Выращивание кристаллов по методу Чохральского заключается в затвердевании (присоединении атомов в узлы кристаллической решётки) атомов жидкой фазы на границе раздела жидкость/кристалл при постепенном вытягивании кристалла из расплава.
Методом Чохральского получают
80% кремния от общего объёма производимого кремния для нужд электроники. Суть метода заключается в следующем.
Куски поли-Si расплавляют в тигле из плавленого кварца в атмосфере аргона. Расплав поддерживается при температуре незначительно превосходящую точку плавления кремния 1415 С. Затравочный монокристалл высокого качества с требуемой кристаллической ориентацией опускается в расплав и одновременно вращается. При этом тигель вращается в противоположном направлении, чтобы вызвать перемешивание расплавов тигля и свести к минимуму неоднородности распределения температуры.
Часть затравочного кристалла растворятся в расплавленном кремнии, чтобы устранить механически напряжённые наружные участки и обнажить нарушенную поверхность монокристалла. Затем затравочный кристалл медленно вытягивают из расплава. По мере поднятия кристалл охлаждается и материал из расплава “пристаёт” к ней, образуя при этом монокристалл. Схематично это можно представить таким образом. Кремний продолжают кристаллическую структуру уже затвердевшего материала. Требуемый диаметр кристалла получается путём регулировки скорости вытягивания и температуры. С ростом переохлаждения увеличивается скорость затвердевания расплава (скорость присоединения атомов к твердому кристаллу). Но растёт вязкость жидкости (расплава) и уменьшается подвижность атомов => дефектность кристалла.
4—тигель (химически инертный, высокая Тпл, прочный, недорогой, (Si3N4,SiO2));
Жидкость (расплав) |
Ось роста |
Рис. 1.27. Установка и схема кристаллического роста в методе Чохральского с соответствующим температурным профилем.
Макроскопическое условие теплопереноса на границе раздела:
, где А1,А2-площади изотерм.
Максимальную скорость вытягивания кристалла без дефектов получим, если предположим отсутствие градиента т.в. расплава (отсутствие переохлаждения) , т.е.
. Тогда :
, где ks – коэф. теплопроводности примеси в расплаве; L – удельная теплота плавления; ρ – плотность Si в твердом состоянии. Скорость выращивания должна быть, с одной стороны, максимальна, чтобы в конечном итоге уменьшить стоимость материала. С другой стороны, увеличение скорости вытягивания сопровождается ростом градиента температур в кристалле, что сказывается на качестве кристалла.
Почему нельзя вырастить кремний прямо в тигле??
1) Расплав кремния, отвердевая, расширяется, его объём увеличивается на 10%. Вследствие этого может произойти разрушение тигля. И даже в том случае, когда тигель выдерживает расширение застывающего кремния, напряжение, возникающее при этом, всё равно вызывают появление дислокаций.
2) Кристаллизация на стенках.
Методом Чохральского выращивают цилиндрические монокристаллические слитки кремния диаметром от нескольких мм до 400 мм. Во многих случаях в монокристалле необходимо иметь определённое количество примеси. Эта примесь вводится добавлением в расплав небольшого, тщательно контролируемого количества желаемого элемента.
Источник
Метод Чохральского. Технология выращивания монокристаллов кремния и германия
Этот процесс был назван в честь выдающегося польского ученого и подданного Российской империи Яна Чохральского, который изобрел его в далеком 1915 году. Открытие произошло случайно, хотя сам интерес Чохральского к кристаллам, разумеется, случайным не был, ведь он очень плотно изучал геологию.
Применение
Пожалуй, самой главной областью применения этого метода является промышленность, особенно тяжелая. В промышленности его до сих пор используют для искусственной кристаллизации металлов и прочих веществ, чего нельзя добиться каким-либо другим способом. В этом отношении метод доказал свою почти абсолютную безальтернативность и универсальность.
Кремний
Монокристаллический кремний — моно-Si. У него есть и другое название. Кремний, выращенный методом Чохральского — Cz-Si. То есть кремний Чохральского. Это основной материал в производстве интегральных схем, используемых в компьютерах, телевизорах, мобильных телефонах и всех типах электронного оборудования и полупроводниковых приборов. Кристаллы кремния также используются в больших количествах фотоэлектрической промышленностью для производства обычных моно-Si-солнечных элементов. Почти идеальная кристаллическая структура дает самую высокую эффективность преобразования света в электричество для кремния.
Плавление
Высокочистый полупроводниковый кремний (всего несколько частей на миллион примесей) расплавляется в тигле при 1425 °C (2,597 °F, 1,698 K), обычно из кварца. Присадочные примесные атомы, такие как бор или фосфор, могут быть добавлены к расплавленному кремнию в точном количестве для легирования, тем самым изменяя его на кремний типа p или n с различными электронными свойствами. Точно ориентированный стержень-семенной кристалл погружается в расплавленный кремний. Шток семенного кристалла медленно поднимается вверх и вращается одновременно. Благодаря точному регулированию градиентов температуры, скорости вытягивания и скорости вращения можно извлечь крупный монокристаллический цилиндрический слиток из расплава. Возникновения нежелательных неустойчивостей в расплаве можно избежать, исследуя и визуализируя поля температуры и скорости. Этот процесс обычно проводят в инертной атмосфере — такой, как аргон, в инертной камере — такой, как кварц.
Промышленные тонкости
Из-за эффективности общих характеристик кристаллов в полупроводниковой промышленности используются кристаллы со стандартизованными размерами. В первые дни их були были меньше, всего несколько дюймов в ширину. С передовыми технологиями производители высококачественных устройств используют пластины диаметром 200 мм и 300 мм. Ширина контролируется точным регулированием температуры, скоростью вращения и скоростью снятия семенного держателя. Кристаллические слитки, из которых нарезаются эти пластины, могут иметь длину до 2 метров, весом несколько сотен килограммов. Большие пластины позволяют улучшить эффективность производства, поскольку на каждой пластине можно изготовить больше чипов, поэтому устойчивый привод увеличил размеры кремниевых пластин. Следующий шаг вверх, 450 мм, в настоящее время планируется ввести в 2018 году. Кремниевые пластины обычно имеют толщину около 0,2-0,75 мм и могут быть отполированы до большой плоскостности для создания интегральных схем или текстурирования для создания солнечных элементов.
Нагревание
Процесс начинается, когда камера нагревается примерно до 1500 градусов Цельсия, плавя кремний. Когда кремний полностью расплавляется, маленький затравочный кристалл, установленный на конце вращающегося вала, медленно опускается до тех пор, пока не окажется ниже поверхности расплавленного кремния. Вал вращается против часовой стрелки, а тигель — по часовой стрелке. Вращающийся стержень затем тянется вверх очень медленно — около 25 мм в час при изготовлении кристалла рубина — с образованием примерно цилиндрической були. Буль может быть от одного до двух метров, в зависимости от количества кремния в тигле.
Электрическая проводимость
Электрические характеристики кремния регулируются путем добавления к нему материала, такого как фосфор или бор, перед его расплавлением. Добавленный материал называется допантом, а процесс — допированием. Этот метод также используется с полупроводниковыми материалами, отличными от кремния, такими как арсенид галлия.
Особенности и преимущества
Когда кремний выращивают по методу Чохральского, расплав содержится в тигле кремнезема. Во время роста стенки тигля растворяются в расплаве, а получаемое вещество содержит кислород при типичной концентрации 1018 см-3. Кислородные примеси могут оказывать полезные или вредные эффекты. Тщательно выбранные условия отжига могут приводить к образованию кислородных осадков. Они влияют на захват нежелательных примесей переходных металлов в процессе, известном как геттерирование, улучшая чистоту окружающего кремния. Однако образование осадка кислорода в непреднамеренных местах может также разрушать электрические структуры. Кроме того, примеси кислорода могут улучшить механическую прочность кремниевых пластин путем иммобилизации любых дислокаций, которые могут быть введены во время обработки устройства. В 1990-х годах было экспериментально показано, что высокая концентрация кислорода также полезна для радиационной твердости детекторов кремниевых частиц, используемых в суровых радиационных условиях (таких как проекты LHC/HL-LHC CERN). Поэтому радиационные детекторы из кремния, выращенного методом Чохральского, считаются перспективными кандидатами на участие во многих будущих экспериментах по физике высоких энергий. Было также показано, что присутствие кислорода в кремнии увеличивает захват примеси в процессе после имплантации отжига.
Проблемы реакции
Однако примеси кислорода могут вступать в реакцию с бором в освещенной среде. Это приводит к образованию электрически активного бор-кислородного комплекса, который снижает эффективность клеток. Выход модуля падает примерно на 3 % в течение первых нескольких часов освещения.
Концентрация примеси в твердом кристалле, являющаяся результатом замораживания объема, может быть получена из рассмотрения коэффициента сегрегации.
Выращивание кристаллов
Выращивание кристаллов — это процесс, в котором уже существовавший кристалл становится больше по мере увеличения количества молекул или ионов в их положениях в кристаллической решетке, или раствор превращается в кристалл, и дальнейший рост обрабатывается. Метод Чохральского является одной из форм этого процесса. Кристалл определяется как атомы, молекулы или ионы, расположенные в упорядоченном повторяющемся образце, кристаллическая решетка, распространяющаяся во всех трех пространственных измерениях. Таким образом, рост кристаллов отличается от роста капли жидкости тем, что во время роста молекулы или ионы должны попадать в правильные положения решетки, чтобы упорядоченный кристалл мог расти. Это очень интересный процесс, подаривший науке множество любопытных открытий таких, как электронная формула германия.
Процесс выращивания кристаллов осуществляется благодаря специальным приспособлениям — колбам и решеткам, в которых и проходит основная часть процесса кристаллизации вещества. Эти приспособления в огромном количестве существуют практически на каждом предприятии, на котором идет работа с металлами, минералами и другими подобными веществами. В ходе процесса работы с кристаллами на производстве было совершено множество важных открытий (например, упомянутая выше электронная формула германия).
Заключение
Метод, которому посвящена эта статья, сыграл большую роль в истории современного промышленного производства. Благодаря нему люди наконец-то научились создавать полноценные кристаллы кремния и многих других веществ. Сначала в лабораторных условиях, а затем и в промышленных масштабах. Метод выращивания монокристаллов, открытый великим польским ученым, массово используется до сих пор.
Источник