Меню

Взаимодействие колес с почвой

ВЗАИМОДЕЙСТВИЕ ВЕДОМЫХ КОЛЕС С ПОЧВОЙ

ВЗАИМОДЕЙСТВИЕ ДВИЖИТЕЛЯ С ПОЧВОЙ

Сам по себе подвод мощности, крутящего момента и частоты вра­щения от двигателя через трансмиссию еще не достаточен для движения трактора и выполнения им какой-либо работы. Движение трактора воз­никает в результате взаимодействия движителя с почвой. Причем при взаимодействии ведущих и ведомых колес происходят различные про­цессы. Ведомые колеса являются пассивными, к ним не подводится крутящий момент. В отличие от них к ведущим колесам крутящий мо­мент подводится и их называют активными колесами. Поэтому целесо­образно рассмотреть отдельно взаимодействие ведомых и ведущих ко­лес с почвой.

Возможны четыре случая качения ведомых колес по дороге: каче­ние недеформируемого (например, металлического) колеса по деформи­руемой дороге, качение деформируемого колеса по недеформируемой (например, бетонной) дороге, качение деформируемого колеса по де­формируемой дороге, качение недеформируемого колеса по недефор­мируемой дороге. Рассмотрим качение недеформируемого ведомого колеса по деформируемой дороге (рис. 93).

Gn вес трактора, приходящийся на одно ведомое колесо; Fn — тол­кающая сила, действующая на ось ведомого колеса со стороны остова трактора. Будучи прижатым к дороге силой G. ведомое колесо внедря­ется на какую-то глубину в почву и образует колею глубиной h. В каж­дой точке на длине дуги 1-2 контакта колеса с почвой возникают две реакции почвы на колесо: радиальная (по радиусу к центру О колеса) и тангенциальная (по касательной к окружности колеса в данной точке). Сложив между собой указанные реакции, получают две реакции R и Т, точка приложения которых находится примерно посредине дуги 1-2 . Сложив реакции R и Г между собой по правилу параллелограмма, полу­чим результирующую реакцию Rpi!l, которую в свою очередь можно разложить на вертикальную Yn и горизонтальную Х„ реакции. Реакцию У„ называют нормальной реакцией почвы на ведомое колесо, по величи­не она равна весу G. Заметим, что реакция Ym на плече а„ относительно оси колеса, создает момент сопротивления качению Mfn ведомого коле­са, который уравновешивается другим моментом Хп ■ г„, т.е.:

Рис. 93. Взаимодействие недеформируемого ведомою колеса с деформируемой дорогой

Горизонтальная составляющая Хn результирующей реакции почвы на колесо есть не что иное, как сила сопротивления качению ведомого колеса. Из предыдущей (9) находят эту силу:

Таким образом, при взаимодействии ведомого колеса с почвой воз­никает сила сопротивления движению (качению) ведомого колеса, ве­личина которой пропорциональна весу G,, и параметру, получившему название коэффициента сопротивления качению ведомого колеса

Для всего же трактора сила сопротивления движению (качению) будет

где f- коэффициент сопротивления качению трактора; Gj — эксплуатационный вес трактора; rn динамический радиус ведомого колеса.

Можно убедиться, что чем больше глубина колеи Л, тем больше длина дуги 1-2, тем больше плечо а„ и меньше радиус г„, тем больше коэффициенты сопротивления качению fnи f, и больше сила сопротив­ления качению Рf. Следовательно, величины коэффициента f и силы сопротивления качению Pf зависят от типа движения (гусеничный или колесный) и типа почвы (целина, залежь; стерня, вспаханное поле, поле, подготовленное под посев). При движении трактора по деформируемой дороге гусеничный движитель по сравнению с колесным образует менее глубокую колею. Следовательно, у гусеничного движителя параметры/ и Pj меньше. Сила сопротивления качению играет в динамике трактора отрицательную роль, т.к. на ее преодоление затрачивается часть силы тяги Рк и часть мощности, подводимой к ведущим колесам. Снижение силы Pf является важнейшей проблемой в вопросе повышения эффек­тивности использования трактора. Ходовую часть (движитель) всегда надо содержать в чистоте, очищенную от грязи. Дополнительное сни­жение силы Pf достигается всеми способами, которые снижают глубину колеи: более широкие колеса (гусеницы), шины низкого давления, уширители колес, двойные скаты, полугусеничный ход на колесном тракто­ре и т. п. Применение этих способов особенно важно при работе тракто­ра на более рыхлой (мягкой) почве.

Читайте также:  Пестициды загрязнение почвы причины

При взаимодействии деформируемого колеса с недеформируемой доро­гой имеет место другая природа возникновения силы сопротивления ка­чению (рис. 94).

Рис. 94. Взаимодействие деформируемого ведомого колеса с недеформируемой дорогой

В контакт с дорогой вступает передний участок шины и он дефор­мируется, на его деформацию затрачивается часть энергии (мощности) трактора, по мере качения колеса в контакт с дорогой вступают новые участки, а ранее деформируемые выходят из контакта и приобретают первоначальную форму, при этом энергия высвобождается. Однако вы­свобождаемая энергия всегда меньше затраченной, т.е. часть энергии теряется на преодоление внутримолекулярного трения в шине и нагревает ее. Поэтому эпюра распределения реакции почвы на деформиро­ванный участок шины приобретает форму, показанную на рисунке 94, т.е. наибольшие реакции действуют на переднем участке шины. В ре­зультате чего результирующая реакция Ynбудет смещена вперед отно­сительно оси колеса на величину аn. Равновесие колеса обеспечивается равенством моментов:

В целом для трактора сила сопротивления качению будет

В данном случае силу сопротивления качению можно снизить за счет уменьшения величины деформации шины, а для этого необходимо соблюдать следующее правило: при движении колесного трактора (ав­томобиля) по твердому покрытию необходимо увеличивать давление в шинах, в результате этого деформация шины уменьшается, плечо а„ также уменьшается, а радиус аn увеличивается, силы Хn и Pf уменьша­ются, снижается также износ шин. При взаимодействии деформируемо­го колеса с деформируемой почвой возникновение силы сопротивления качения обусловливается действием обоих факторов: деформацией поч­вы (образованием колеи) и деформацией шины. При этом в целях сни­жения силы Pj при работе трактора на рыхлой почве надо давление в шинах снижать (глубина колеи уменьшается), а при движении по твер­дой почве давление в шинах следует увеличивать (уменьшается дефор­мация шины).

При взаимодействии недеформируемого колеса с недеформируе-мой дорогой силой сопротивления качению является сила трения между колесом и почвой. Ее величина является минимальной по сравнению с другими случаями качения. При движении по мягкому покрытию у гу­сеничного трактора сила Pfменьше, чем у колесного, а по твердому по­крытию наоборот.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

2.9. Взаимодействие ведущего колеса с почвой.

ПРИРОДА ВОЗНИКНОВЕНИЯ ТОЛКАЮЩЕЙ СИЛЫ ТРАКТОРА

В отличии от ведомого колеса (пассивного) к ведущему (активно­му) подводится крутящий момент от двигателя через трансмиссию. Ха­рактер взаимодействия ведущего колеса существенно отличается от рассмотренного выше. На рисунке 95 показано взаимодействие ведуще­го колеса с почвой.

При подводе крутящего момента Мк к ведущему колесу движение трактора наступает не сразу. Первоначально почвозацеп, внедренный в почву двигается назад и прессует почву в горизонтальном направлении в сторону, противоположную направлению движения. При этом происходят два взаимосвязанных явления.

Читайте также:  Подкормка браги бородинским хлебом

Первое. В результате такого прессования почвы теряется путь на величину AS и теряется скорость движения трактора. Этот процесс по­лучил название буксование ведущего колеса и играет отрицательную роль.

Второе. В результате горизонтального прессования почвы в сторо­ну, противоположную направлению движения, в почве возникает гори­зонтальная реакция Хк , направленная по направлению движения трак­тора. Эта реакция получила название толкающей силы, которая приво­дит в движение трактор, преодолевая все силы, препятствующие его движению, в том числе силу сопротивления качению Р/ и силу тяги на крюке Рк„.

На рисунке 95 обе эти силы входят в реакцию остова Fk. Силу тяги на крюке Ркр можно с определенной степенью точности назвать силой сопротивления рабочего органа сельскохозяйственной машины, напри­мер, плуга. Очевидно, чем больше сила Ркр, т.е. чем больше сопротивле­ние плуга, тем больше должна быть толкающая сила Хк, а следовательно больше должно быть горизонтальное прессование почвы, т.е. больше будет буксование.

В этом заключается глубокое противоречие в динамике трактора: повышение силы тяги (этот фактор положительный) со­провождается увеличением буксования (этот фактор отрицательный).

Рис. 95. Взаимодействие ведущего колеса с почвой: Gk — вес трактора, приходящийся на ведущее колесо;

Мк крутящий момент, подведенный к ведущему колесу; Fk реакция со сторо­ны остова трактора на ведущее колесо; rk динамический радиус ведущего ко­леса; Yk нормальная реакция почвы на ведущее колесо

На буксование трактора теряется часть мощности, поступающей на ве­дущее колесо трактора. При этом уменьшается полезная мощность на крюке. Это обстоятельство является второй сложнейшей проблемой в динамике трактора. Для решения этой проблемы необходимо, чтобы как можно больше почвозацепов одновременно взаимодействовало с поч­вой. Поэтому гусеничный трактор имеет меньшее буксование и, следо­вательно, лучшие тяговые и сцепные качества. Дальнейшее уменьшение буксования в гусеничном тракторе возможно с применением резиновой гусеницы вместо металлической. Это обстоятельство объясняется сле­дующим образом (рис. 96).

Рис. 96. Взаимодействие почвозацепа гусеничного движителя с почвой

Строго говоря, толкающую силу Хк можно представить как сумму двух сил: сила сцепления Рхщ почвозацепа с почвой и сила трения Fmp гусеницы с почвой. Кстати, такое представление толкающей силы рас­крывает физический смысл процесса сцепления движителя с почвой, являющегося решающим фактором эффективного использования трак­тора. Именно сила зацепления Рюц напрямую связана с буксованием, а величина силы трения Fmp зависит от материала гусеницы. Толкающая сила Хк пропорциональна силе тяги на крюке Ркр и при мгновенном рас­смотрении системы: движитель-почва Ркр, величина постоянна. Следо­вательно, если при этом удается за счет каких-то приемов увеличить силу Fmp, то сила Ртц автоматически снижается и уменьшается буксова­ние. Одним из способов увеличения силы Fmp является замена стальной гусеницы, у которой коэффициент трения с почвой значительно больше.

Реально коэффициент трения может быть увеличен в два раза. Сле­довательно, можно в два раза уменьшить силу Ршц, что автоматически во столько же раз снижает буксование и потери мощности на буксова­ние, вследствие чего возрастает полезная мощность на крюке и произ­водительность трактора. Резиновая гусеница применяется на тракторе «Челленджер» фирмы «Катерпиллар» (США).

Читайте также:  Безопасные удобрения для аквариума

Буксование зависит от типа движителя и типа почвы. У колесного трактора на той же самой почве буксование больше, чем у гусеничного, т.к. у него меньшее количество почвозацепов одновременно находится в зацеплении с почвой. Следовательно, у колесного трактора тягово-сцепные качества ниже, чем у гусеничного.

При работе на более рыхлых почвах (вспаханное поле; поле, подго­товленное под посев и др.) буксование больше, чем на более твердых почвах (целина, залежь и др.). При движении трактора по асфальту, бе­тону, укатанной дороге и другим твердым дорожным покрытиям сцеп­ление движителя с почвой обусловлено только наличием трения между опорной поверхностью движителя и почвой.

Количественно процесс буксования оценивается коэффициентом буксования S, который равен отношению разницы теоретической v, и действительной v(, скоростей к теоретической скорости:

Эта формула раскрывает физический смысл процесса буксования: в числителе указана величина потери скорости. При этом под теоретиче­ской скоростью понимают скорость движения трактора без нагрузки на крюке, когда условно считают, что буксование отсутствует. Хотя из сказанного выше очевидно, что если есть движение трактора, то имеет место и буксование.

Как сказано выше, с увеличением силы тяги на крюке буксование возрастает, эта зависимость представлена кривой буксования (рис. 97).

Рис. 97. Кривая буксования

Кривой буксования называют зависимость коэффициента буксова­ния от силы тяги на крюке.

Для различных типов движителей и колесных формул кривые бук­сования разные (рис. 98).

Pкрфmax это предельная сила тяги на крюке, реализуемая по сцеп­лению движителя с почвой, при которой наступает 100%-ное буксова­ние и трактор останавливается.

где коэффициент сцепления движителя с почвой, зависящий от типа движителя и типа почвы;

Рис. 98. Кривые буксования для различных типов движителей: а — гусеничный трактор (например, Т—150); б — колесный трактор с колесной фор­мулой 4К4 (например, Т-150К со всеми ведущими колесами); в — колесный трак­тор с колесной формулой 4К2 (например, Т-150К с двумя ведущими колесами)

Gсц сцепной вес трактора, т.е. вес, участвующий в сцеплении

движителя с почвой, т.е. вес, приходящийся на ведущие колеса трактора.

где тэ эксплуатационная масса трактора;

коэффициент использования веса трактора;

= 1 для гусеничного трактора и колесного с колесной фор­мулой 4К4;

= 0,70. 0,75 для колесного трактора с колесной формулой 4К2;

g ускорение свободного падения.

Чем больше сцепной вес трактора, тем больше и выше тягово-сцепные качества трактора. Таким образом, самые высокие тягово-сцепные качества имеет гусеничный трактор, несколько ниже они у ко­лесного трактора со всеми ведущими колесами (4К4) и самые низкие — у колесного трактора с двумя ведущими колесами (4К2).

Кроме того, кривые буксования оказываются разными для различ­ных почвенных фонов (рис. 99).

Рис. 99. Кривые буксования для различных почвенных фонов:

1 — стерня, 2 — вспаханное поле, 3 — поле, подготовленное под посев

Для повышения тягово-сцепных качеств применяют целый ряд способов: догрузка ведущих колес, полугусеничный ход, арочные ши­ны, все ведущие колеса, модульное энергетическое средство (МЭС) и др.

Источник

Adblock
detector