Меню

Загрязнение экосистем нефтью почв пестицидами

Особенности воздействия углеводородов нефти на санитарное состояние почвенных экосистем

Дата публикации: 12.03.2015 2015-03-12

Статья просмотрена: 314 раз

Библиографическое описание:

Смольникова, В. В. Особенности воздействия углеводородов нефти на санитарное состояние почвенных экосистем / В. В. Смольникова, Т. И. Винник. — Текст : непосредственный // Молодой ученый. — 2015. — № 6 (86). — С. 331-333. — URL: https://moluch.ru/archive/86/16186/ (дата обращения: 11.12.2021).

Почва — очень благоприятная среда для развития микроорганизмов. Микробиологический почвенный комплекс участвует в процессах формирования специфических органических соединений, круговорота наиболее значимых биогенных элементов (азота, серы, фосфора, углерода) и в процессах самоочищения. В почве обнаруживаются практически все известные таксонометрические группы микроорганизмов: бактерии, актиномицеты, грибы, вирусы, сине-зеленые водоросли, простейшие и т. д. В зависимости от типа почв общее содержание микроорганизмов в 1 г может достигать 6 млрд. клеток [1].

Особенностью распространения бактерий в почве является их высокая локализация в ризосфере (прикорневой зоне растений) и очаговая локализация по почвенному профилю. Каждый почвенный горизонт содержит специфические группировки микроорганизмов со сходными экологическими потребностями.

На качественный состав почвенного микробиоценоза влияет тип почвы, содержание и концентрация различных органических веществ, влажность, видовой состав растительности, аэрация и антропогенные воздействия. Наиболее опасным видом антропогенного воздействия на почвенную экосистему, вызывающим снижение ее биогенной продуктивности и способность выполнять основные функции — является загрязнение.

Загрязнение почв нефтью и нефтепродуктами является глобальной экологической проблемой. Основными источниками загрязнения почвенной экосистемы сырой нефтью или нефтепродуктами являются такие промышленные объекты как: объекты нефтедобычи и первичной переработки нефти, нефтебазы, парки готовой продукции, трубопроводы, а так же железнодорожный и автотранспорт. Однако, загрязнение окружающей среды углеводородами нефти и наиболее тяжелые последствия чаще всего возникают в результате аварий.

Непосредственно после попадания в почву сырая нефть подавляет развитие большинства групп микроорганизмов, а в процессе биодеградации углеводородов нефти при обогащении почвенной среды продуктами распада формируются анаэробные условия и структура почв, отрицательно влияющие на естественные биохимические процессы, определяющие почвенное плодородие [1, 2].

Мы проводили бактериологический анализ нефтезагрязненных почв с различной начальной концентрацией углеводородов на наличие санитарно-показательных микроорганизмов.

Выбор микроорганизмов для характеристики санитарного состояния почв был сделан на основе известных данных об изменениях в почвенном микробиоценозе в зависимости от различных факторов (присутствие кислорода, наличие загрязняющих веществ). В почвах присутствуют различные группы микроорганизмов, имеющих существенное различие в типе дыхания. Обнаруживаются не только аэробные и анаэробные формы, но и факультативные анаэробы, микроаэрофилы и облигатные анаэробы.

К факультативным анаэробам относятся бактерии, способные развиваться как в присутствии, так и в отсутствии кислорода. Большинство патогенных и сапрофитных почвенных микроорганизмов является факультативными анаэробами (семейство кишечных бактерий Enterobacteriaceae, патогенные стафилококки, палочка протея, клостридии). Микроаэрофилы нуждаются в небольших количествах кислорода и в основном представлены актиномицетами, бруцеллами, лептоспирами. Присутствие кислорода оказывает отрицательное воздействие на облигатных анаэробов, является фактором, резко тормозящим их рост и развитие. Облигатными анаэробами являются клостридии столбняка, анаэробной инфекции, ботулизма.

Для исследования использовали образцы ставропольского чернозема, загрязненного сырой нефтью ставропольских месторождений. Концентрация углеводородов в почве составляла 1, 3, 5, 7 и 10 г/кг, а в качестве контроля применяли незагрязненный чернозем. Для всех образцов нефтезагрязненных почв определялись количество мезофильных аэробных факультативных и анаэробных микроорганизмов (КМАФАнМ) и наличие санитарно-показательной микрофлоры, в том числе, бактерий группы кишечных палочек (БГКП), а также бактерий рода сальмонелл, протеев и плесневых грибов. Все опыты проводились в трехкратной повторности согласно стандартным методикам [3, 4].

При определении КМАФАнМ можно получить представление об общем содержании микроорганизмов в пробе. Этот показатель не может быть индикатором присутствия или отсутствия в пробе патогенных микроорганизмов. В контроле КМАФАнМ составило 19·10 3 –20·10 3 КОЕ/г почвы. В образцах свежезагрязненной почвы численность микрофлоры не зависела от концентрации внесенной нефти и соответствовала полученному в контрольном образце количеству, т. е. 19·10 3 –20·10 3 КОЕ/г почвы. Через двое суток в этих образцах численность микроорганизмов незначительно сокращалась до 18·10 3 –19·10 3 КОЕ/г, причем снижение общей численности микробной популяции также не зависело от концентрации углеводородов в почве. Через 7 дней для всех свежезагрязненных образцов было отмечено минимальное КМАФАнМ, прослеживалась зависимость численности микрофлоры от начальной концентрации нефти в почве: с ее увеличением общее количество микрофлоры уменьшалось. На 14 и 21 сутки во всех исследованных образцах обнаруживался рост общей численности микрофлоры с различной интенсивностью, одновременно с этим увеличивалось количество анаэробных микроорганизмов.

Бактерии группы кишечной палочки имеют широкое распространение в природе, хотя основная среда обитания — кишечник птиц, животных. Обнаружение этих бактерий в исследуемой пробе — индикатор загрязнения исследуемой среды фекальными массами.

Имеются принципиальные различия при определении санитарно-показательного значения отдельных родов БГКП. Обнаружение в пробах почвы бактерий рода Citrobacter и Enterobacter является свидетельством давнего фекального загрязнения среды, тогда как присутствие пробах Escherichia указывает на свежее загрязнение. Большое значение имеют, в частности, E. coli, присутствие которых указывает на возможное наличие патогенной микрофлоры. Почва является благоприятной средой для развития патогенной микрофлоры, при этом значение коли-титра ≤ 0,9 свидетельствует о бактериальном загрязнении почвы, а 0,09 — показатель ее сильного загрязнения.

Сальмонеллы относятся к грамотрицательным бактериям семейства Enterobacteriaceae, способны сбраживать углеводы и спирты. Большинство сальмонелл подвижны, не образуют капсул, при культивировании на жидких средах дают диффузное помутнение, а при использовании дифференциальных лактозосодержащих сред имеют бесцветные колонии. Они широко распространены в природе, легко адаптируются к самым различным условиям, большинство их патогенны. Это факультативные анаэробы, попадающие во внешнюю среду с отходами жизнедеятельности человека и животных. В незагрязненной среде сальмонеллы погибают в течение нескольких суток, однако в загрязненной почве могут сохраняться длительное время. Присутствие сальмонелл в исследуемых пробах может быть косвенным свидетельством загрязнения почв фекалиями животных, птичьим пометом или плохо обработанными органическими удобрениями.

Бактерии рода протеев относятся к санитарно-показательным микроорганизмам, патогенным для человека. Их относят к грамотрицательным, споронеобразующим, факультативно анаэробным бактериям, а обнаружение P. vulgaris принято рассматривать как показатель загрязнения объекта органическими веществами причем чаще всего эти микроорганизмы обнаруживаются в гниющих остатках. Высокая обсемененность почв неспорообразующими микроорганизмами рассматривается как признак экологического неблагополучия [1, 3].

В контрольном образце коли-титр был равен 1, что соответствует незагрязненной среде, не были обнаружены анаэробные микроорганизмы P. vulgaris и сальмонеллы. Непосредственно после внесения нефти в почву в загрязненных образцах наблюдалось угнетение микроорганизмов всех видов, в том числе и санитарно-показательных. Во всех образцах свежезагрязненной почвы количество БГКП не превышало допустимых значений, не были обнаружены бактерии родов Proteus и Salmonellа.

Бактериологические исследования повторили на 2, 7, 14 и 21 сутки. Уже на 7 сутки коли-титр соответствовал бактериальному загрязнению почвы, а на 21 сутки был равен 0,09. Количество обнаруженных клеток P. vulgaris возрастало с увеличением концентрации нефти в образцах и давностью углеводородного загрязнения. При концентрации нефти 5 г/кг на 14 сутки было обнаружено максимальное количество клеток — 90 КОЕ/г.

Читайте также:  Освещение при выращивании земляники

Наибольшая величина КМАФАнМ 3,2·10 4 КОЕ/г почвы наблюдалась при начальной концентрации нефти 1 г/кг и давности загрязнения 21 день. Увеличение начальной концентрации нефти в почве и повышение давности загрязнения способствовало накоплению бактерий рода Salmonellа (Salmonella spp.) — до 1,1·10 5 КОЕ/г почвы.

Высокое содержание плесневых грибов в почвах ухудшает их санитарное состояние и является неблагоприятным фактором. В исследованных образцах плесени были обнаружены только в пробах почвы с начальной концентрацией нефти 1, 3 и 5 г/кг, причем обнаруживалось от 1 до 2 колоний плесени. При повышении концентрации нефти до 7 г/кг в двух образцах из трех плесени обнаружено не было, а в одном — 1 колония. В посевах почвы с содержанием нефти 10 г/кг колоний плесени обнаружено не было. Таким образом, непосредственно после попадания в почву углеводороды нефти подавляют развитие плесеней. Однако в процессе биодеградации углеводородов при обогащении почвенной среды продуктами распада создаются условия для развития плесневых грибов.

Таким образом, присутствие углеводородов не столько изменяет качественный и количественный состав микрофлоры нефтезагрязненного субстрата, сколько ухудшает санитарные показатели почв. В связи с этим актуален поиск эффективных способов подавления развития санитарно-показательных микроорганизмов биотехнологическими методами.

1. Звягинцев Д. Г. Почва и микроорганизмы. — М.: МГУ, 1987. — 256 с.

2. Гузев В. С., Левин С. В. Техногенные изменения сообщества почвенных микроорганизмов // В кн. «Перспективы развития почвенной микробиологии». — М.: МАКС Пресс, 2001. — С. 178–219.

3. Справочник по микробиологическим и вирусологическим методам исследования / Под ред. М. О. Бюргер. — М.: Медицина, 1973. — 456 с.

4. Теппер Е. З., Шильникова В. К., Переверзева Г. И. Практикум по микробиологии. — М.: Колос, 1979. — 216 с.

5. Смольникова В. В. Влияние метода очистки почв на санитарное состояние нефтезагрязненной территории // Современная лаборатория (Украина, Днепропетровск). — № 2. — 2010. — С. 42–45.

Источник

Загрязнение объектов экосистемы пестицидами: пути и последствия

Дата публикации: 02.06.2014 2014-06-02

Статья просмотрена: 10015 раз

Библиографическое описание:

Баев, Н. А. Загрязнение объектов экосистемы пестицидами: пути и последствия / Н. А. Баев, Д. Э. Шелманова, Н. Н. Максимюк. — Текст : непосредственный // Молодой ученый. — 2014. — № 8 (67). — С. 370-373. — URL: https://moluch.ru/archive/67/11460/ (дата обращения: 11.12.2021).

В статье представлены данные о загрязнении пестицидами основных элементов экологической системы и влияние их токсичности на: почву и её обитателей, насекомых, птиц и животных, человека. Также приведены меры личной безопасности и профилактики отравлений этим видом химического загрязнения.

Ключевые слова:пестициды, токсичность, экосистема, почвенная биота, насекомые, теплокровные животные, профилактика отравлений.

Поступление пестицидов в почву помимо прямого внесения их или с протравленным ими зерном, связано с поливом растений и стоком осадков с поверхности растений, сносом препаратов при обработке полей, лесных угодий и т. д. Возможность накопления пестицидов в почве определяется условиями их применения (нормами расхода, кратностью обработки), стабильностью и растворимостью препаратов, типом почвы, её рН, температурой и влажностью, условиями вымывания, инактивирующим действием растений, глубиной проникновения и т. д. В результате протекающих в почве химических и биологических процессов содержание пестицидов в ней обычно уменьшается, тем не менее остаточные количества их колеблются от сотых долей до десятков микрограммов в 1 кг. Наименее устойчивы пестициды в опесчаненных почвах, наиболее устойчивы в почвах с большим содержанием глины, органических веществ, ионов железа, алюминия и марганца. Находясь в почве, пестициды подвергаются действию абиотических факторов (света, воздуха, воды), существенную роль в их разложении играют микроорганизмы. В процессах гидролиза, окисления, демитилирования и других, пестициды разлагаются, иногда с образованием токсичных продуктов [1].

Для предотвращения накопления пестицидов в почве прибегают к увеличению интервала времени между их введением и сбором урожая, к уменьшению кратности обработки, снижению расходов препаратов путем добавки утяжелителей, препятствующих их сносу за зону обработки, упорядочиванию хранения и транспортировки пестицидов. Все это уменьшает, однако не исключает возможность загрязнения почвы [2, 3]. Загрязнение поверхности водоемов происходит несколькими путями. Пестициды могут попадать в воду при смыве с почвенного покрова и растений, при сносе волны препарата, в процессе аэрообработки, при неправильной технологии опрыскивания и опыления, за счет поступления загрязненных ими грунтовых вод в районах орошаемого земледелия, при попадании воды, фильтрующихся из оросительных систем, и, наконец, в результате вымывания пестицидов из почвы.

Масштаб выноса пестицидов определяется количеством, способом и временем внесения препаратов в почву, их растворимостью, устойчивостью к разложению, способностью сорбироваться почвой и мигрировать по ее профилю, интенсивностью эрозионных процессов, типом почв, рельефом местности, объёмом и интенсивностью выпадения осадков и т. д. Помимо описанных путей загрязнения, по существу не поддающихся регулированию, пестициды могут поступать в водоемы целенаправленно — для уничтожения сорной растительности и насекомых, а также со сточными водами производящих или использующих их предприятий, в частности тепличных хозяйств.

Основным источником поступления пестицидов в водные объекты является поверхностный сток талых, дождевых и грунтовых вод с сельскохозяйственных угодий, коллекторно-дренажные воды, сбрасываемые с орошаемых территорий. Пестициды также могут вноситься в водные объекты во время их обработки с целью уничтожения нежелательных водных растений и других гидробионтов, со сточными водами промышленных предприятий, производящих ядохимикаты, непосредственно при обработке полей пестицидами с помощью авиации, при небрежной транспортировке их водным транспортом и при хранении. Несмотря на большой вынос стойких пестицидов в водную среду, содержание их в природных водах относительно невелико из-за быстрой кумуляции пестицидов гидробионтами и отложения в илах. Коэффициенты кумуляции (во сколько раз содержание химического вещества больше в гидробионтах, чем в воде) составляют от 3–10 до 1000–500000 раз. В поверхностных водах пестициды могут находиться в растворенном, взвешенном и сорбированном состояниях [1].

Обработки инсектицидами против вредных насекомых оказывают побочное действие на фауну беспозвоночных животных агроэкосистем, в том числе на почвенную биоту, имеющую важное значение в почвообразовательном процессе. Следует отметить резко выраженную избирательность токсического действия отдельных пестицидов на разных групп животных. Все хлорорганические, большинство фосфорорганических инсектицидов в большей степени снижают численность жужелиц и муравьев, карбаматы губят ногохвосток, клещей и многоножек. При применении некоторых пестицидов отмечена гибель пауков, однако причиной ее является не прямое действие инсектицидов, а вторичное отравление при поедании токсицированных насекомых. Высокоустойчивы ко всем пестицидам дождевые черви. Действие инсектицилов на почвенную фауну проявляется не толь в снижении численности фитофагов и энтомофагов, но и уменьшении количества видов, обитающих на сельскохозяйственных угодьях. Таким образом, более токсическое действие на представителей почвенной биоты оказывают инсектициды, которые непосредственно вносятся в почву, особенно в больших дозах, — именно они способны привести к гибели почвенной фауны и даже к гибели целых популяций; мене токсичным действием обладают гербициды и фунгициды. Токсическое действие пестицидов на насекомых зависит от сроковиспособов применения пестицидов. Большинство фунгицидов и гербицидов малоопасно или неопасно для пчёл. Основные причины, вызывающие массовое отравление пчёл пестицидами,– отсутствие строгого планирования мероприятий по химической защите растений и нарушение правил предупреждения пчеловодов за 3–5 дней о конкретном времени, месте и характере намечаемых обработок посевов и посадок сельскохозяйственных культур. Опасна обработка растений днем, когда наблюдается массовый лет пчёл, а также обработка больших массивов энтомофильных растений, находящихся в фазе цветения, препаратами, обладающими длительным остаточным действием. Отравление пчёл происходит в случае непосредственной близости обрабатываемых полей к посевам и посадкам цветущих медоносов. Для защиты пчёл от воздействия пестицидов необходимо проводить химические обработки вечером или рано утром. На время обработки следует изолировать или вывезти пчёл. Стойкие пестициды могут отрицательно влиять не только на беспозвоночных, против которых они в основном и применяются, но и на теплокровных животных. Птицы могут погибать при склевывании протравленных семян в результате небрежного и халатного обращения с ними или отравленных насекомых. В случае загрязнения окружающей среды остатками пестицидов могут погибнуть в первую очередь рыбоядные и хищные птицы, располагающиеся в конце пищевых цепей [2, 3].

Читайте также:  Доломитовая мука применение как удобрение

Наиболее опасны для птиц стойкие хлорорганические препараты. При попадании их в организм птиц может нарушаться репродуктивный процесс. Действие других пестицидов, относящихся к различным классам органических соединений, на птиц незначительно благодаря малой токсичности и быстрой детоксикации в окружающей среде. Исследования в РФ показали, что при химических обработках птицы покидают обработанную территорию, а иногда и гибнут от отравления в основном при нарушениях регламентов и мер безопасности при использовании пестицидов в районах борьбы с грызунами, в зоне возделывания зерновых, при химических обработках садов и лесных массивов.

При химической защите растений животные подвергаются опасности в результате отравления их пищи или непосредственно от действия пестицидов. К наиболее опасным свойствам хлорорганических инсектицидов относится их отрицательное воздействие на репродуктивность животных и выделение с молоком. Отмечается уменьшение количества детенышей в приплоде зверей, а также гибель молодняка у подопытных животных, в корм которых добавляли гексахлоран в дозах, используемых в производственных обработках. У животных могут возникать защитные реакции, что позволяет в определенной степени избегать пагубного действия пестицидов. Животные способны выбирать неотравленный корм, так как многие пестициды обладают для теплокровных репеллентными свойствами. Часто после применения пестицидов наблюдается миграция животных с обработанных участков. При действии пестицидов защитные реакции возникают не только у отдельных особей, но и у популяции в целом. Одна из защитных реакций — увеличение числа самок в приплоде (зайцы, кролики, некоторые виды полевок). У диких теплокровных животных появляются резистентные к пестицидам формы, которые передают устойчивость потомству. В целом причины отравления и гибели животных часто не в токсических свойствах пестицидов, а в грубом нарушении регламентов и правил химической обработки [2].

Токсичность пестицидов для человека неодинакова и зависит от многих причин. Особую опасность представляют пестициды, характеризующиеся высокой устойчивостью во внешней среде, выраженными кумулятивными свойствами и способностью выделяться с молоком лакгирующих животных и с молоком кормящих матерей. K этой группе ядохимикатов относятся хлорорганические пестициды (гексахлоран, полихлорпинен, лигдан и др.). Например, гексахлоран в почве может сохраняться в течение до 11 лет. Наиболее приемлемы пестициды, которые под воздействием факторов внешней среды сравнительно быстро распадаются на безвредные компоненты. В настоящее время в сельском хозяйстве широко используются фосфорорганические вещества, обладающие меньшей устойчивостью к факторам внешней среды. Большинство из них разлагается в растениях, почве, воде в течение месяца. Пестициды этой группы значительно реже обнаруживаются в продуктах питания, так как разрушаются при кулинарной обработке [4].

Пути загрязнения пищевых продуктов ядохимикатами разнообразны. В продукты растительного происхождения пестициды могут попадать непосредственно при обработке сельскохозяйственных культур, продовольственных запасов, а также в результате загрязнения почвы; воды, воздуха. В продукты животного происхождения, в частности, в молоко, мясо и жиры, пестициды могут попадать при обработке ими кожных покровов животных с целью уничтожения эктопаразитов, а также при употреблении скотом корма, содержащего остатки ядохимикатов. Длительное потребление загрязненных пестицидами пищевых продуктов может оказать вредное воздействие на организм человека.

Неблагоприятное влияние пестицидов на организм человека может проявляться в виде острого и хронического отравления. Острое отравление чаще возникает при грубых нарушениях правил применения пестицидов и правил использования пищевых продуктов, обработанных пестицидами (использование семенного зерна, протравленного гранозаном). Хронические отравления возникают в результате длительного употребления пищевых продуктов, содержащих пестициды, в дозах, незначительно превышающих предельно допустимые концентрации. Проявление хронических отравлений наиболее часто сопровождается заболеваниями органов пищеварения (печени, желудка), сердечно-сосудистой системы. В основе механизма токсического действия большинства фосфорорганических соединений лежит угнетение холинэстеразы, сопровождающееся накоплением в крови и тканях ацетилхолина [1, 5].

В нашей стране в государственном масштабе осуществляются меры по снижению вредного воздействия пестицидов на здоровье населения. В РФ введено санитарное законодательство по регламентации и контролю за использованием пестицидов. Ежегодно пересматривается и утверждается список химических средств, рекомендуемых для применения в сельском хозяйстве. Ядовитые стойкие препараты заменяются менее токсичными. Осуществляется контроль со стороны государственных служб за производством, транспортировкой, хранением и применением ядохимикатов. Организован лабораторный контроль пищевых продуктах [6–8]. Установлен перечень ядохимикатов с предельно допустимой нормой содержания их в различных пищевых продуктах [9, 10].

Разрабатываются методы освобождения пищевых продуктов от остатков пестицидов. Особое внимание обращают на продукты, занимающие большой удельной вес в питании населения, в частности на молоко [11–20]. Установлено, что наиболее эффективным методом освобождения молока от остатков пестицидов является сушка. В процессе сгущения и сушки обезжиренного молока почти полностью удаляются стойкие пестициды (ДДТ, линдин и др.). При сушке цельного молока удаляется до 20–30 % пестицидов. Поэтому снижение жирности любого продукта является фактором снижения в нем пестицидов [2, 9, 10].

Профилактика отравлений пестицидами во многом определяется строгим соблюдением инструкций и выполнением правил личной гигиены. Работающие с пестицидами должны уметь подобрать и правильно использовать средства индивидуальной защиты. Токсическое действие пестицидов на человека зависит от состояния организма, поэтому следует соблюдать рациональный режим труда, питания и отдыха.

Читайте также:  Как получит хороший урожай огурцов

Важную роль в профилактике отравлений играет рациональное питание [21–28], оно повышает сопротивляемость организма к действию ядовитых веществ. Пища должна быть богата белками, витаминами, желательно, чтобы она содержала продукты, обладающие обволакивающими свойствами, которые уменьшают раздражающее действие химических соединений и препятствуют их всасыванию. Перед началом работы с пестицидами необходим прием пищи. Отсутствие ее в желудочно-кишечном тракте создает условия, способствующие более быстрому всасыванию в кровь химических веществ и более сильному поражению организма. Утром и в обед работающие с пестицидами должны употреблять в достаточном количестве жидкую пищу. Такая пища способствует быстрому выведению ядовитых веществ. Не рекомендуется употреблять продукты, задерживающие жидкость в организме. Работающие с хлорорганическими пестицидами должны употреблять пищу, богатую животными белками (мясо, творог, рыба), солями кальция, витамином В2. Следует избегать жиров, так как они способствуют всасыванию ядовитых веществ в организм. [2, 9].

Таким образом, ведущими принципами рационального использования пестицидов должны быть: строгий учёт экологической обстановки на сельскохозяйственных угодьях, точное знание критериев, при какой численности вредных и полезных организмов целесообразно применение химической борьбы. Химические приёмы следует сочетать с агротехническими, селекционными, организационно-хозяйственными. Важно обеспечить сельскохозяйственное производство такими пестицидами, которые обладали бы узконаправленным спектром действия и не накапливались во внешней среде.

1. Алексеев С. В., Пивоваров Ю. П., Янушанец О. И. Экология человека. М.: ИКАР, 2002. 770 с.

2. Гринин А. С. Омнигенная экология. Брянск: БГСХА, 1995. 457 с.

3. Новиков Ю. В. Экология, окружающая среда и человек. М.: Агентство «ФАИР», 1998. 320 с.

4. Кирюшкин В. И. Экологизация земледелия и технологическая политика. М.: МСХА, 2000. 473 с.

5. Боев В. М., Митришин О. В., Дмитриев В. К. и др. Гигиеническая оценка формирования суммарного риска популяционному здоровью на урбанизированных территориях. Гигиена и санитария, 2007. № 5. С. 12–14.

6. Боган В. И., Ребезов М. Б., Гайсина А. Р., Максимюк Н. Н., Асенова Б. К. Совершенствование методов контроля качества продовольственного сырья и пищевой продукции. Молодой ученый. 2013. № 10. С. 101–105.

7. Белокаменская А. М., Ребезов М. Б., Мазаев А. Н., Ребезов Я. М., Зинина О. В. Применение физико-химических методов исследований в лабораториях Челябинской области. Молодой ученый. 2013. № 4. С. 48–53.

8. Асенова Б. К., Ребезов М. Б., Топурия Г. М., Топурия Л. Ю., Смольникова Ф. Х. Контроль качества молока и молочных продуктов. Алматы: Халықаралық жазылым агентігі, 2013. 212 с.

9. Пивоваров Ю. П., Королик В. В., Зиневич Л. С. Гигиена и основы экологии человека: учебник для вузов. М.: Академия, 2004. 528 с.

10. Экология человека и технологий. Под ред. А. С. Гринина. Калуга: Облиздат, 1999. 474 с.

11. Кондратьева А. В., Прохасько Л. С., Мазаев А. Н. Потребительские предпочтения питьевого молока в Челябинске. Молодой ученый. 2013. № 11. С. 117–120.

12. Альхамова Г. К., Максимюк Н. Н., Наумова Н. Л., Амерханов И. М., Зинина О. В., Залилов Р. В., Ребезов М. Б. Новые творожные изделия с функциональными свойствами. Челябинск: ИЦ ЮУрГУ, 2011. 94 с.

13. Максимюк Н. Н., Ребезов М. Б. Физиологические основы продуктивности животных. В.Новгород: Новгородский технопарк, 2013. 144 с.

14. Rebezov M. B., Naumova N. L., Lukin A. A., Alkhamova G. K., Khayrullin M. F. Food behavior of consumers (for example, Chelyabinsk). Вопросы питания. 2011. № 6. С. 23.

15. Альхамова Г. К., Ребезов М. Б., Амерханов И. М., Мазаев А. Н. Анализ потребительских предпочтений при выборе творожных продуктов. Молодой ученый. 2013. № 3. С. 13–16.

16. Наумова Н. Л., Ребезов М. Б., Варганова Е. Я. Функциональные продукты. Спрос и предложение. Челябинск: ИЦ ЮУрГУ, 2012. 78 с.

17. Ребезов М. Б., Богатова О. В., Догарева Н. Г. Альхамова Г. К., Наумова Н. Л., Залилов Р. В., Максимюк Н. Н. Основы технологии молока и молочных продуктов. Челябинск: ИЦ ЮУрГУ, 2011. Ч. 1. 123 с.

18. Ребезов М. Б., Мирошникова Е. П., Альхамова Г. К., Наумова Н. Л., Хайруллин М. Ф., Залилов Р. В., Зинина О. В. Методы исследований свойств сырья и молочных продуктов. Челябинск: ИЦ ЮУрГУ, 2011. 58 с.

19. Наумова Н. Л., Альхамова Г. К., Кожевникова Е. Ю., Сорокин А. В., Ребезов М. Б. Конъюнктура предложения обогащенных молочных продуктов на примере Челябинска. Молочная промышленность. 2011. № 8. С. 38–39.

20. Ребезов М. Б., Наумова Н. Л., Альхамова Г. К., Лукин А. А., Хайруллин М. Ф. Экология и питание. Проблемы и пути решения. Фундаментальные исследования. 2011. № 8–2. С. 393–396.

21. Губер Н. Б., Ребезов М. Б., Асенова Б. К. Перспективные способы разработки мясных биопродуктов. Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2014. Т. 2. № 1. С. 72–79.

22. Ребезов М. Б., Зинина О. В., Максимюк Н. Н., Соловьева А. А. Использование животных белков в производстве мясопродуктов. Вестник Новгородского государственного университета имени Ярослава Мудрого. 2014. № 76. С. 51–53.

23. Ребезов М. Б., Зинина О. В., Несмеянова О. В., Максимюк Н. Н., Асенова Б. К. Патентный поиск проектирования функциональных продуктов питания. Научное обеспечение инновационного развития животноводства: мат. ХХ междунар. научн.-практ. конф. Жодино, 2013. С. 435–436.

24. Соловьева А. А., Зинина О. В., Ребезов М. Б., Лакеева М. Л., Гаврилова Е. В. Актуальные биотехнологические решения в мясной промышленности. Молодой ученый. 2013. № 5. С. 105–107.

25. Асенова Б. К., Амирханов К. Ж., Ребезов М. Б. Технология производства функциональных продуктов питания для экологически неблагоприятных регионов. Торгово-экономические проблемы регионального бизнес-пространства. 2013. № 1.С. 313–316.

26. Тарасова И. В., Ребезов М. Б., Зинина О. В., Ребезов Я. М. Использование коллагенсодержащего сырья животного происхождения при производстве мясного биопродукта. Сборник научных трудов SWorld. 2013. Т. 4. № 1. С. 46–50.

27. Догарева Н. Г., Стадникова С. В., Ребезов М. Б. Создание новых видов продуктов из сырья животного происхождения и безотходных технологий их производства. В сборнике: Университетский комплекс как региональный центр образования, науки и культуры: Всероссийской научно-методической конференции (с международным участием). 2013. С. 945–953.

28. Зинина О. В., Жакслыкова С. А., Солнцева А. А., Чернева А. В., Ребезов М. Б. Полуфабрикаты мясные рубленые с ферментированным сырьем. Технология и товароведение инновационных пищевых продуктов. 2012. № 3. С. 19–25.

Источник

Adblock
detector