Меню

Завод азотных удобрений это

Азотные удобрения

Карта отрасли

Высокотехнологичное производство

Высокотехнологичное производство — технологически и предметно замкнутый участок предприятия, основанный на высоких технологиях и вы­пускающий законченную высокотехнологичную продукцию для реализации её на рынке. Под высокотехнологичным производством мо­жет пониматься и всё предприятие в целом, выпускающее высокотехноло­гичную продукцию.

Характерные особенности высоких технологий:
  • Защищенной интеллектуальной собственностью (патенты, ноу-хау, лицензии),
  • Большим удельным весом затрат на научные исследования и разработки,
  • Междисциплинарным характе­ром (возникают в результате взаимодействия нескольких наук),
  • Многостадийностью и непрерывностью технологического процесса,
  • Высоким уровнем автоматизации производственного процесса и контроля эмиссии вредных веществ,
  • Высоким уровнем требований к знаниям и навыкам персонала,
  • Значительными капитальными вложениями в создание производства.
Высокотехнологичное производство, общий алгоритм

Основные стадии производства МАФ, ДАФ, NPS, NPK на основе азотнокислотного разложения фосфатного сырья:
  • Прием и передача сырья и полуфабрикатов;
  • Азотно-кислотное разложения апатита;
  • Осветление азотно-кислотной вытяжки апатита (АКВ);
  • Кристаллизация и фильтрация нитрата кальция;
  • Приготовление азотно-фосфорного раствора (АФР) и аммонийного азотно-фосфорного раствора (ААФР);
  • Производство карбоната кальция и растворов аммиачной селитры;
  • Упаривание ААФР до остаточной влажности пульпы 9% ÷ 15% в трехкорпусной выпарной батарее с доупаривателем;
  • Смешение с хлористым калием (при необходимости);
  • Гранулирование и сушка полученной массы гранул удобрений в БГС. Сушка гранул удобрений осуществляется горячими топочными газами, смешанными с воздухом для получения теплоносителя заданной температуры;
  • Выделение готового продукта из полученной массы гранул методом классификации, охлаждения его в аппарате КС низкого кипящего слоя.

Схема производства гранулированного аммофоса с аппаратом БГС (на основе концентрированной пульпы):
1 ‑ сборник кислоты; 2 ‑ САИ; 3 ‑ сборник пульп; 4 ‑ БГС; 5 ‑ грохот; 6 ‑ холодильник КС; 7 ‑ абсорбер; 8 ‑ циклоны; 9 ‑ дробилка; 10 ‑ транспортер; 11 ‑ элеватор

Основные стадии производства азотной кислоты:
  • Фильтрация атмосферного воздуха от механических примесей;
  • Сжатие воздуха в осевом воздушном компрессоре;
  • Испарение жидкого аммиака (NH3) теплом конденсации водяного пара;
  • Фильтрация NH3 от брызг жидкого и механических примесей, подогрев газообразного NH3;
  • Подогрев сжатого воздуха;
  • Смешение NH3 и воздуха с получением смеси (АВС), содержащей 10–10,5 объемных % аммиака;
  • Окисление аммиака кислородом воздуха на катализаторных сетках из сплавов платины с добавками (родия, рутения, палладия);
  • Охлаждение нитрозного газа (НГ) в газотрубном котле-утилизаторе с продуцированием пара;
  • Окисление NO в окислителе;
  • Нагрев выхлопного газа до входа в реактор селективной очистки теплом охлаждения нитрозного газа, который остывает на входе в холодильник-конденсатор;
  • Охлаждение НГ в двух холодильниках-конденсаторах; при охлаждении образуется конденсат азотной кислоты с концентрацией 50 % — 55 % HNO3;
  • Абсорбция оксидов азота водой с образованием 58 % азотной кислоты; содержание O2 — до 3 об. %;

1 ‑ фильтр воздуха; 2 ‑ воздушный компрессор; 3 ‑ ресивер; 4 ‑ испаритель аммиака; 5 ‑ фильтр газообразного аммиака; 6, 7, 13, 22, 27, 28 ‑ подогреватели; 8, 29 ‑ абсорбер; 9 ‑ фильтр аммиачно-воздушной смеси; 10 ‑ контрактный аппарат; 11 ‑ котел-утилизатор; 12 ‑ экономайзер; 14, 23 ‑ холодильники-конденсаторы; 15 ‑ промыватель; 16, 19, 21 ‑ насосы; 17, 18 ‑ теплообменники; 20 ‑ нитрозный нагнетатель; 24 ‑ абсорбционная колонна; 25 ‑ продувочная колонна; 26 ‑ ловушка; 30 ‑ рекатор каталической очистки; 31 ‑ газовая турбина; 32 ‑ паровая турбина

Читайте также:  Время действия азотных удобрений
Производство аммиачной селитры
  • Прием и очистка капельного жидкого аммиака;
  • Нагрев газообразного аммиака теплом парового конденсата из выпарного аппарата;
  • Прием и нагрев азотной кислоты соковым паром из нейтрализаторов;
  • Нейтрализация азотной кислоты и получение раствора АС с концентрацией 89% — 92% NH4NO3;
  • Донейтрализация раствора АС до pH=5,5–6 и смешение с кондиционирующей добавкой;
  • Нагнетание атмосферного воздуха и нагрев водяным паром перед подачей в выпарной аппарат;
  • Упаривание раствора АС до состояния плава с концентрацией 99,7% NH4NO3 в токе воздуха;
  • Донейтрализация плава аммиаком и перекачка плава на верх гранбашни;
  • Гранулирование капель плава охлаждением в потоке воздуха.

Сырьем для производства АС служат газообразный аммиак и азотная кислота с концентрацией 56% — 60% мнг HNO3, иногда 46% — 48%.

1,2 — подогреватели соответственно газообразного аммиака и азотной кислоты; 3 — аппарат ИТН; 4, 5 — донентрализаторы; 6 — комбинированный выпарной аппарат; 7, 24 — подогрева-тели воздуха; 8 — нагнетатель воздуха; 9 — гидрозатвор-донейтрализатор; 10 — фильтр плава; 11 — бак для плава аммиачной селитры; 12 — погружной насос; 13 — насос центробежный; 14 — бак для раствора аммиачной селитры; 15 — бак напорный; 16, 17 — грануляторы соответственно акустический и монодисперсный; 18 — скруббер; 19, 23 — вентиляторы; 20 — грануляционная башня; 21, 25 — ленточные конвейеры; 22 — аппарат для охлаждения аммиачной селитры в кипящем слое; 23 — вентилятор; 26 — элеватор; 27 — аппарат для обработки гранул ПАВ.

Источник

Азотная промышленность и производство удобрений в России

Основными сферами деятельности современной азотной промышленности России, основы которой были заложены в 1927 году с запуском Чернореченского химического завода, являются:

  • получение водорода методом паровой конверсии (риформинга) метана и природного газа,
  • производство аммиака и азотной кислоты,
  • выпуск на их основе комплекса азотных удобрений.

К числу последних из перечисленных продуктов азотной отрасли относятся органические и неорганические соединения, имеющие в своём составе азот, а именно:

  • мочевина (карбамид) и цианамид кальция – амидные удобрения;
  • аммофос и диаммофос, хлористый аммоний, сульфат, сульфид и карбонат аммония – удобрения аммиачные;
  • калиевая, кальциевая и натриевая селитры – нитратные удобрения;
  • аммиачная и известково-аммиачная селитры – аммиачно-натриевые удобрения.

Кроме того, аммиак, являющийся важнейшим сырьём для химической промышленности (общемировая выработка его составляет свыше 180 млн т в год) и получаемая из него азотная кислота являются главными компонентами в деле производства взрывчатых веществ, серной кислоты, соды, растворителей.

История технологий

Продолжительное время источником получения селитры (комплекса минералов, имеющих в своём составе аммоний и нитраты группы щелочных и щелочноземельных металлов), служащей в качестве сырья для получения аммиака, а из него – азотной кислоты; являлись месторождения в Чили и Индии. А также простейшие технологии на основе использования органических отходов флоры и фауны, с добавлением ряда горных пород и строительного мусора. Интереснейший исторический факт: Видный французский учёный Гаспар Монж сумел-таки в момент блокады и вызванного ею экономического кризиса, обеспечить революционные силы Французской республики порохом. А произошло это посредством переработки отбросов и навоза под воздействием бактерий.

Долго так продолжаться не могло. Залежи селитры быстро истощались. А переработка мусора мало что давала. Мировая научная общественность пребывала в сильном затруднении в связи с грядущей проблемой отсутствия удобрений для нужд растениеводства, грозящей тотальным голодом. Но целый ряд проведённых крупнейшими европейскими учёными исследований, привёл в начале XX-го века к осуществлению синтеза аммиака, положенного в основу функционирования современной азотной промышленности.

Читайте также:  Конский навоз залить водой

Роль азота в жизни растений

В это же самое время крупнейший специалист в области агрохимии – российский академик Д. Н. Прянишников проанализировав международный опыт земледелия, приходит к выводу о важности обеспечения культурных растений азотом. Впоследствии жизнь подтвердила его умозаключения.

Сейчас из 214 млн т производимых в мире удобрений 57% падает на долю азотных. 24% – на фосфорные, остальное – на калийные. Развивающиеся страны мира: Китай, Индия, Индонезия, Бразилия быстрыми темпами наращивают их выпуск. Ситуация такова, что лидирующие позиции по выпуску азотных удобрений удерживают:

Список крупнейших экспортёров возглавляют:

  • Россия – 9,1 млн т,
  • Китай – 7,2 млн т,
  • Нидерланды – 2,6 млн т.

А всё потому, что азот является важнейшим химическим элементом живой клетки. Входя в состав белков, хлорофилла, нуклеиновых кислот, ферментов, фосфатидов, витаминов, алкалоидов, он активно воздействует на процессы фотосинтеза и обмена веществ, запуская, регулируя и ускоряя рост и развитие самих растений. Его недостаток или отсутствие приводит к замедлению процесса созревания плодов, подверженности болезням, вплоть до полного прекращения роста и гибели самих растений.

Производство удобрений

Две третьих изготавливаемых и употребляемых азотных удобрений (в 2019 году их было выпущено 23,95 млн т) в нашей стране составляют аммиачная селитра и мочевина. Раннее для их производства применялся коксовый газ, что обуславливало привязку предприятий к объектам металлургической отрасли. Сегодня активнее используется газ природный, обеспечивая тем самым взаимодействие с нефтегазовой промышленностью.

Процесс получения аммиака заключается в синтезе его молекул из азота и водорода при повышенном давлении и температуре, проходящем при участии железного катализатора. Азот извлекают из воздуха, а водород является результатом восстановления воды из природного газа, имеющего в своём составе значительное количество метана.

В зависимости от необходимости получения того или иного продукта, последующая технология будет выглядеть следующим образом:

  • Аммиачная селитра – реакция нейтрализации азотной кислоты под воздействием аммиака.
  • Мочевина – процесс взаимодействия аммиака и углекислого газа.
  • Сульфат аммония – итог протекания аммиачного газа сквозь раствор серной кислоты.

И это лишь малая часть технологических особенностей производства, предназначенного для удовлетворения потребностей агропромышленного комплекса. Структуры призванной обеспечить сельскохозяйственной продукцией жителей страны в необходимом объёме – выполнить продовольственную программу. Для осуществления столь важной задачи требуется дальнейшее развитие азотной промышленности, нацеленное на значительное увеличение выпуска азотных удобрений (снижающее импортную зависимость), как одного из приоритетных направлений российской экономики.

Источник

Производство азотных удобрений

Производство азотных удобрений – одна из ведущих отраслей сельского хозяйства и химической промышленности России. Это обусловлено не только востребованностью подкормок данного вида, но и относительной дешевизной процесса. Кроме того, азот является приоритетным макроэлементом, обеспечивающим нормальный рост и развитие растительного организма, то есть, внесение азотных удобрений (как и их производство) можно считать первостепенной фермерской задачей.

Читайте также:  Знаки лунного календаря по плодородию

Роль азота в жизни растений

Азот считается одним из важнейших элементов растительной клетки. Входя в состав нуклеиновых кислот, азот частично отвечает за передачу наследственной информации, выполняя тем самым репродуктивную функцию. Также азот входит в состав хлорофилла, принимая непосредственное участие в процессе обмена веществ.

В случае недостатка азота можно наблюдать следующие симптомы:

  • замедление роста – вплоть до полной остановки;
  • бледность листьев;
  • появление светлых пятен;
  • пожелтение листьев;
  • мелкоплодие и осыпание плодов.

Острое азотное голодание способно привести к:

      непереносимости низкой температуры в зимний период и, как следствие, отсутствию урожая в последующие сезоны;
      угнетению иммунной системы растений;
      наиболее ослабленных побегов и культуры в целом. Именно поэтому не стоит затягивать с внесением подкормки в случае проявления признаков недостаточного содержания азота в почве.

Азотные удобрения, наиболее часто применяемые в сельском хозяйстве

Аммиачная селитра – характеризуется высоким содержанием азота (до 36%), может использоваться не только для основного внесения, но и в качестве разовых подкормок, эффективна на слабоувлажненных почвах и практически бесполезна на песчаных грунтах, требует безоговорочного соблюдения правил хранения.

Сульфат аммония – удобрение со средним содержанием азота (до 20%), идеально подходит для основного внесения, поскольку хорошо закрепляется в почве, к условиям хранения не требовательно.

Карбамид (мочевина) – содержание азота достигает 48%, обеспечивает качественные результаты в сочетании с органическими удобрениями, подходит для внекорневой подкормки.

Кальциевая селитра – щелочное удобрение, хорошо подходящее для нечерноземной почвы.

Органические азотные удобрения (навоз, птичий помет, торф, компост) применяются весьма активно, однако низкий процент содержания азота и необходимость большого количества времени для его минерализации – существенно снижают эффективность данных удобрений. Плюсом же является низкая себестоимость.

Технология производства азотных удобрений

Производство азотных удобрений базируется на исходном сырье, коим является аммиак. До недавнего времени аммиак получали из кокса (коксового газа), поэтому многие предприятия, специализирующиеся на изготовлении удобрений, располагались в непосредственной близости от металлургических заводов. Более того, крупные металлургические комбинаты практикуют производство азотных удобрений в качестве «попутной» продукции.

На сегодняшний день приоритеты несколько изменились и основным сырьем для удобрений все больше выступает не коксовый, а природный газ. Так что современные производители удобрений дислоцируются вблизи магистральных газопроводов. Также производство азотных удобрений было успешно налажено на основе использования отходов нефтепереработки.

Технология производства азотных удобрений в химической промышленности не считается сложной, однако для обывателя ее нюансы понятны далеко не всегда. Если максимально упростить детали процесса, то выглядеть все будет примерно так: через генератор с горящим коксом пропускается поток воздуха, полученный в результате азот смешивается с водородом в определенной пропорции (при этом крайне важны значения давления и температуры), что дает на выходе необходимый в производстве удобрений аммиак.

Дальнейшие детали процесса привязаны к конкретному виду удобрения: изготовление нитрата аммония (аммиачной селитры) основано на нейтрализации азотной кислоты аммиаком, производство карбамида (мочевины) подразумевает взаимодействие аммиака с углекислым газом при определенной температуре и давлении, сульфат аммония образуется при пропускании аммиачного газа через раствор серной кислоты.

Уже определились со стилем? Закажите проект под ключ в компании «Лэнд» и осуществите свою мечту

Источник

Adblock
detector